Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Blood ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848537

ABSTRACT

We previously reported a better outcome in adult and pediatric T-cell acute lymphoblastic leukemia (T-ALL) harboring NOTCH1 and/or FBXW7 mutations without alterations of K-N-RAS and PTEN genes. Availability of high-throughput next-generation sequencing strategies (NGS) led us to refine the outcome prediction in T-ALL. Targeted whole-exome sequencing of 72 T-ALL related oncogenes was performed in 198 adult T-ALLs in first remission (CR1) from the GRAALL-2003/2005 protocols (ClinicalTrial.gov, NCT00222027, NCT00327678) and 242 pediatric T-ALLs from the FRALLE2000T. This approach enabled the identification of the first NGS-based classifier in T-ALL categorizing low-risk patients as those with N/F, PHF6, or EP300 mutations, excluding N-K-RAS, PI3K pathway (PTEN, PIK3CA, and PIK3R1), TP53, DNMT3A, IDH1/2, and IKZF1 alterations, with a 5-year cumulative incidence of relapse (CIR) estimated at 21%. Conversely, the remaining patients were classified as high-risk, exhibiting a 5-year CIR estimated at 47%. We externally validated this stratification in the pediatric cohort. NGS-based classifier was highly prognostic, independently of minimal residual disease (MRD) and white blood cells counts (WBC), in both adult and pediatric cohorts. Integration of the NGS-based classifier into a comprehensive risk stratification model, including WBC count at diagnosis and MRD at the end of induction, enabled the identification of an adverse risk subgroup (25%) with a 5-year CIR estimated at 51%, and a favorable risk group (32%) with a 5-year CIR estimated at 12%. NGS-based stratification combined with WBC and MRD sharpens the prognostic classification in T-ALL and identifies a new subgroup of patients who may benefit from innovative therapeutic approaches.

2.
Blood ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518104

ABSTRACT

Given the poor outcome of refractory and relapsing T-ALL, identifying prognostic markers is still challenging. Using SNP-array analysis, we provide a comprehensive analysis of genomic imbalances in a cohort of 317 newly-diagnosed T-ALL patients including 135 children and 182 adults with respect to clinical and biological features and outcomes. SNP-array results identified at least one somatic genomic imbalance in virtually all T-ALL patients (~96%). Del(9)(p21) (~70%) and UPD(9)p21)/CDKN2A/B (~28%) were the most frequent genomic imbalances. Unexpectedly del(13q14)/RB1/DLEU1 (~14%) was the second more frequent CNV followed by del(6)(q15)/CASP8AP2 (~11%), del(1)(p33)/SIL-TAL1 (~11%), del(12)(p13)ETV6/CDKN1B (~9%), del(18)(p11)/PTPN2 (~9%), del(1)(p36)/RPL22 (~9%), and del(17)(q11)/NF1/SUZ12 (~8%). SNP-array also revealed distinct profiles of genomic imbalances according to age, immunophenotype, and oncogenetic subgroups. In particular, adult T-ALL patients demonstrated a significantly higher incidence of del(1)(p36)/RPL22, and del(13)(q14)/RB1/DLEU1, and lower incidence of del(9)(p21) and UPD(9p21)/CDKN2A/B. We determined a threshold of 15 genomic imbalances to stratify patients into high- and low-risk groups of relapse. Survival analysis also revealed the poor outcome, despite the low number of affected cases, conferred by the presence of chromothripsis (n=6, ~2%), del(16)(p13)/CREBBP (n=15, ~5%) as well as the newly identified recurrent gain at 6q27 involving MLLT4 (n=10, ~3%). Genomic complexity, del(16)(p13)/CREBBP and gain at 6q27 involving MLLT4 maintained their significance in multivariate analysis for survival outcome. Our study thus demonstrated that whole genome analysis of imbalances provides new insights to refine risk stratification in T-ALL.

3.
Bull Cancer ; 111(3): 291-309, 2024 Mar.
Article in French | MEDLINE | ID: mdl-38267311

ABSTRACT

The spectrum of childhood leukemia predisposition syndromes has grown significantly over last decades. These predisposition syndromes mainly involve CEBPA, ETV6, GATA2, IKZF1, PAX5, RUNX1, SAMD9/SAMD9L, TP53, RAS-MAPK pathway, DNA mismatch repair system genes, genes associated with Fanconi anemia, and trisomy 21. The clinico-biological features leading to the suspicion of a leukemia predisposition are highly heterogeneous and require varied exploration strategies. The study of the initial characteristics of childhood leukemias includes high-throughput sequencing techniques, which have increased the frequency of situations where a leukemia predisposing syndrome is suspected. Identification of a leukemia predisposition syndrome can have a major impact on the choice of chemotherapy, the indication for hematopoietic stem cell transplantation, and screening for associated malformations and pathologies. The diagnosis of a predisposition syndrome can also lead to the exploration of family members and genetic counseling. Diagnosis and management should be based on dedicated and multidisciplinary care networks.


Subject(s)
Down Syndrome , Leukemia , Neoplasms , Child , Humans , Leukemia/diagnosis , Leukemia/genetics , Leukemia/therapy , Family , Genetic Predisposition to Disease , Intracellular Signaling Peptides and Proteins
4.
Biol Chem ; 405(1): 43-54, 2024 01 29.
Article in English | MEDLINE | ID: mdl-37650383

ABSTRACT

To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.


Subject(s)
Neurons , Optogenetics , Humans , Brain
6.
Sci Rep ; 12(1): 20824, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460710

ABSTRACT

A strong bias related to age is observed in COVID-19 patients with pediatric subjects developing a milder disease than adults. We hypothesized that a specific SARS-CoV-2 effect conjugated with preexisting differences in the immune systems may explain this. Using flow cytometry, we investigated basal immune differences in a cohort consisting of 16 non-infected young and 16 aged individuals and further leveraged an in vitro whole blood model of SARS-CoV-2 infection so that functional differences could be mined as well. In short, blood diluted in culture media was incubated 5 or 24 h with the trimeric spike protein or controls. Following unsupervised analysis, we first confirmed that the immune lymphoid and myeloid systems in adults are less efficient and prone to develop higher inflammation than those in children. We notably identified in adults a higher CD43 lymphocyte expression, known for its potentially inhibitory role. The spike protein induced different responses between adults and children, notably a higher increase of inflammatory markers together with lower monocyte and B cell activation in adults. Interestingly, CD169, a CD43 ligand overexpressed in COVID-19 patients, was confirmed to be strongly modulated by the spike protein. In conclusion, the spike protein exacerbated the preexisting lower immune responsiveness and higher inflammatory potential in adults. Altogether, some of the markers identified may explain the marked age bias and be predictive of severity.


Subject(s)
COVID-19 , Monocytes , Spike Glycoprotein, Coronavirus , Adult , Aged , Child , Humans , COVID-19/immunology , Monocytes/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
7.
SAGE Open Med ; 10: 20503121221115483, 2022.
Article in English | MEDLINE | ID: mdl-35959245

ABSTRACT

Objective: The COVID-19 corona virus disease outbreak is globally challenging health systems and societies. Its diagnosis relies on molecular methods, with drawbacks revealed by mass screening. Upregulation of neutrophil CD64 or monocyte CD169 has been abundantly reported as markers of bacterial or acute viral infection, respectively. We evaluated the sensitivity of an easy, one-step whole blood flow cytometry assay to measure these markers within 10 min, as a potential screening test for COVID-19 patients. Methods: Patients (n = 177) with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were tested on 10 µL blood and results were compared with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Results: We observed 98% and 100% sensitivity in early-stage (n = 52) and asymptomatic patients (n = 9), respectively. Late-stage patients, who presented for a second control RT-qPCR, were negative for both assays in most cases. Conversely, neutrophil CD64 expression was unchanged in 75% of cases, without significant differences between groups. Conclusion: Monocyte CD169 evaluation was highly sensitive for detecting SARS-CoV-2 infection in first-presentation patients; and it returns to basal level upon infection clearance. The potential ease of fingerprick collection, minimal time-to-result, and low cost rank this biomarker measurement as a potential viral disease screening tool, including COVID-19. When the virus prevalence in the tested population is usually low (1%-10%), such an approach could increase the testing capacity 10 to 100-fold, with the same limited molecular testing resources, which could focus on confirmation purposes only.

9.
Blood Cancer J ; 12(1): 14, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082269

ABSTRACT

T-cell acute lymphoblastic leukemias (T-ALL) represent 15% of pediatric and 25% of adult ALL. Since they have a particularly poor outcome in relapsed/refractory cases, identifying prognosis factors at diagnosis is crucial to adapting treatment for high-risk patients. Unlike acute myeloid leukemia and BCP ALL, chromosomal rearrangements leading to chimeric fusion-proteins with strong prognosis impact are sparsely reported in T-ALL. To address this issue an RT-MPLA assay was applied to a consecutive series of 522 adult and pediatric T-ALLs and identified a fusion transcript in 20% of cases. PICALM-MLLT10 (4%, n = 23), NUP214-ABL1 (3%, n = 19) and SET-NUP214 (3%, n = 18) were the most frequent. The clinico-biological characteristics linked to fusion transcripts in a subset of 235 patients (138 adults in the GRAALL2003/05 trials and 97 children from the FRALLE2000 trial) were analyzed to identify their prognosis impact. Patients with HOXA trans-deregulated T-ALLs with MLLT10, KMT2A and SET fusion transcripts (17%, 39/235) had a worse prognosis with a 5-year EFS of 35.7% vs 63.7% (HR = 1.63; p = 0.04) and a trend for a higher cumulative incidence of relapse (5-year CIR = 45.7% vs 25.2%, HR = 1.6; p = 0.11). Fusion transcripts status in T-ALL can be robustly identified by RT-MLPA, facilitating risk adapted treatment strategies for high-risk patients.


Subject(s)
Oncogene Proteins, Fusion , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult , Oncogene Proteins, Fusion/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , T-Lymphocytes/pathology
10.
Future Microbiol ; 16: 955-966, 2021 09.
Article in English | MEDLINE | ID: mdl-34406067

ABSTRACT

Aim: A new one-step flow cytometry procedure has been recently demonstrated for identifying subjects with infections, but only for fresh whole blood samples. The goal of this study was to assess its applicability on frozen samples, by proposing a new method to perform the sample freezing directly and easily. Methods: Fresh blood was tested, then frozen either directly or with dimethylsulfoxide and serum. Common markers of white blood cells as well as infection-related biomarkers were tested. Results: All percentages of leucocyte subsets and levels of infection-related biomarkers were significantly correlated between frozen and fresh samples. Conclusion: The direct freezing method enables an accurate assessment of common cellular sub-populations and of levels of important infectious biomarkers via flow cytometry.


Subject(s)
Biomarkers/blood , Freezing , Leukocytes , Flow Cytometry , Humans , Proof of Concept Study
11.
Adv Sci (Weinh) ; 8(18): e2100323, 2021 09.
Article in English | MEDLINE | ID: mdl-34278739

ABSTRACT

Blood cell analysis is a major pillar of biomedical research and healthcare. These analyses are performed in central laboratories. Rapid shipment from collection site to the central laboratories is currently needed because cells and biomarkers degrade rapidly. The dried blood spot from a fingerstick allows the preservation of cellular molecules for months but entire cells are never recovered. Here leucocyte elution is optimized from dried blood spots. Flow cytometry and mRNA expression profiling are used to analyze the recovered cells. 50-70% of the leucocytes that are dried on a polyester solid support via elution after shaking the support with buffer are recovered. While red blood cells lyse upon drying, it is found that the majority of leucocytes are preserved. Leucocytes have an altered structure that is improved by adding fixative in the elution buffer. Leucocytes are permeabilized, allowing an easy staining of all cellular compartments. Common immunophenotyping and mRNAs are preserved. The ability of a new biomarker (CD169) to discriminate between patients with and without Severe Acute Respiratory Syndrome induced by Coronavirus 2 (SARS-CoV-2) infections is also preserved. Leucocytes from blood can be dried, shipped, and/or stored for at least 1 month, then recovered for a wide variety of analyses, potentially facilitating biomedical applications worldwide.


Subject(s)
Communicable Diseases/diagnosis , Diagnostic Tests, Routine/methods , Dried Blood Spot Testing/methods , Hematology/methods , Immunophenotyping/methods , Antibodies, Viral/blood , Biomarkers/blood , Blood Specimen Collection/methods , COVID-19/diagnosis , Cell Separation/methods , Communicable Diseases/virology , Erythrocytes/virology , Flow Cytometry/methods , Humans , Leukocytes/virology , RNA, Messenger/blood , SARS-CoV-2/genetics
13.
J Hematol Oncol ; 14(1): 74, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941203

ABSTRACT

IDH1 and IDH2 mutations (IDH1/2Mut) are recognized as recurrent genetic alterations in acute myeloid leukemia (AML) and associated with both clinical impact and therapeutic opportunity due to the recent development of specific IDH1/2Mut inhibitors. In T-cell acute lymphoblastic leukemia (T-ALL), their incidence and prognostic implications remain poorly reported. Our targeted next-generation sequencing approach allowed comprehensive assessment of genotype across the entire IDH1 and IDH2 locus in 1085 consecutive unselected and newly diagnosed patients with T-ALL and identified 4% of, virtually exclusive (47 of 49 patients), IDH1/2Mut. Mutational patterns of IDH1/2Mut in T-ALL present some specific features compared to AML. Whereas IDH2R140Q mutation was frequent in T-ALL (25 of 51 mutations), the IDH2R172 AML hotspot was absent. IDH2 mutations were associated with older age, an immature phenotype, more frequent RAS gain-of-function mutations and epigenetic regulator loss-of-function alterations (DNMT3A and TET2). IDH2 mutations, contrary to IDH1 mutations, appeared to be an independent prognostic factor in multivariate analysis with the NOTCH1/FBXW7/RAS/PTEN classifier. IDH2Mut were significantly associated with a high cumulative incidence of relapse and very dismal outcome, suggesting that IDH2-mutated T-ALL cases should be identified at diagnosis in order to benefit from therapeutic intensification and/or specific IDH2 inhibitors.


Subject(s)
Isocitrate Dehydrogenase/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/physiopathology , Adolescent , Adult , Child , Child, Preschool , Humans , Isocitrate Dehydrogenase/genetics , Middle Aged , Mutation , Prognosis , Young Adult
14.
iScience ; 24(3): 102184, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33718836

ABSTRACT

Two-photon (2-P) all-optical approaches combine in vivo 2-P calcium imaging and 2-P optogenetic modulations. Here, firstly, we combined in vivo juxtacellular recordings and GCaMP6f-based 2-P calcium imaging in mouse visual cortex to tune our detection algorithm towards a 100% specific identification of action potential-related calcium transients. Secondly, we minimized photostimulation artifacts by using extended-wavelength-spectrum laser sources for optogenetic stimulation. We achieved artifact-free all-optical experiments performing optogenetic stimulation from 1100 nm to 1300 nm. Thirdly, we determined the spectral range for maximizing efficacy until 1300 nm. The rate of evoked transients in GCaMP6f/C1V1-co-expressing cortical neurons peaked already at 1100 nm. By refining spike detection and defining 1100 nm as the optimal wavelength for artifact-free and effective GCaMP6f/C1V1-based all-optical physiology, we increased the translational value of these approaches, e.g., for the development of network-based therapies.

15.
Cytometry A ; 99(5): 435-445, 2021 05.
Article in English | MEDLINE | ID: mdl-33491921

ABSTRACT

The identification of a bacterial, viral, or even noninfectious cause is essential in the management of febrile syndrome in the emergency department (ED), especially in epidemic contexts such as flu or CoVID-19. The aim was to assess discriminative performances of two biomarkers, CD64 on neutrophils (nCD64) and CD169 on monocytes (mCD169), using a new flow cytometry procedure, in patients presenting with fever to the ED during epidemics. Eighty five adult patients presenting with potential infection were included during the 2019 flu season in the ED of La Timone Hospital. They were divided into four diagnostic outcomes according to their clinical records: no-infection, bacterial infection, viral infection and co-infection. Seventy six patients with confirmed SARS-CoV-2 infection were also compared to 48 healthy volunteers. For the first cohort, 38 (45%) patients were diagnosed with bacterial infections, 11 (13%) with viral infections and 29 (34%) with co-infections. mCD169 was elevated in patients with viral infections, with a majority of Flu A virus or Respiratory Syncytial Virus, while nCD64 was elevated in subjects with bacterial infections, with a majority of Streptococcus pneumoniae and Escherichia coli. nCD64 and mCD169 showed 90% and 80% sensitivity, and 78% and 91% specificity, respectively, for identifying patients with bacterial or viral infections. When studied in a second cohort, mCD169 was elevated in 95% of patients with SARS-CoV-2 infections and remained at normal level in 100% of healthy volunteers. nCD64 and mCD169 have potential for accurately distinguishing bacterial and acute viral infections. Combined in an easy and rapid flow cytometry procedure, they constitute a potential improvement for infection management in the ED, and could even help for triage of patients during emerging epidemics.


Subject(s)
Bacterial Infections/diagnosis , COVID-19/diagnosis , Emergency Service, Hospital , Flow Cytometry , Monocytes/immunology , Receptors, IgG/blood , Sialic Acid Binding Ig-like Lectin 1/blood , Adult , Aged , Bacterial Infections/blood , Bacterial Infections/immunology , Bacterial Infections/microbiology , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Diagnosis, Differential , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Monocytes/microbiology , Monocytes/virology , Predictive Value of Tests , Prospective Studies , Reproducibility of Results
17.
Int J Lab Hematol ; 42(6): 697-704, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32639680

ABSTRACT

INTRODUCTION: In daily practice in haematology laboratories, red blood cell (RBC) abnormalities are frequent and their management is a real challenge. The aim of this study is to establish a "decision tree" using RBC and reticulocyte parameters from the SYSMEX XN-10 analyser to distinguish between patients with a hereditary RBC disease from iron deficiency anaemia and other patients. METHODS: We analysed results of complete RBC counts in a cohort composed of 8217 adults divided into 5 different groups: iron deficiency anaemia (n = 120), heterozygous haemoglobinopathy (n = 92), sickle cell disease syndrome (n = 56), hereditary spherocytosis (n = 18) and other patients (n = 7931). A Classification And Regression Tree (CART) analysis was used to obtain a two-step decision tree in order to predict these previous groups. RESULTS: Five parameters and the calculated RBC score were selected by the CART method: mean corpuscular haemoglobin concentration, percentage of microcytes, distribution width of the RBC histogram, percentage of nucleated red blood cells, immature reticulocytes fraction and finally RBC Score. When applying the tree and recommended flowchart, 158/166 of the RBC hereditary disease patients and 114/120 iron deficiency anaemia patients are detected. Overall, the correct classification rate reached 99.4%. Sensitivity and specificity for RBC disease detection were 95.2% and 99.9%, respectively. These results were confirmed in an independent validation cohort. CONCLUSION: Based on the XN-10 RBC and reticulocyte parameters, we propose a two-step decision tree delivering a good prediction and classification of hereditary RBC diseases. These results can be used to optimize additional reticulocyte analysis and microscopy review.


Subject(s)
Anemia, Iron-Deficiency/blood , Anemia, Sickle Cell/blood , Spherocytosis, Hereditary/blood , Adolescent , Adult , Aged , Aged, 80 and over , Erythrocytes, Abnormal , Female , Humans , Male , Middle Aged , Reticulocyte Count/instrumentation , Reticulocyte Count/standards
18.
Future Microbiol ; 15: 189-201, 2020 02.
Article in English | MEDLINE | ID: mdl-32065550

ABSTRACT

Aim: In an Emergency Department (ED), the etiological identification of infected subjects is essential. 13 infection-related biomarkers were assessed using a new flow cytometry procedure. Materials & methods: If subjects presented with febrile symptoms at the ED, 13 biomarkers' levels, including CD64 on neutrophils (nCD64) and CD169 on monocytes (mCD169), were tested and compared with clinical records. Results: Among 50 subjects, 78% had bacterial infections and 8% had viral infections. nCD64 showed 82% sensitivity and 91% specificity for identifying subjects with bacterial infections. mCD169, HLA-ABC ratio and HLA-DR on monocytes had high values in subjects with viral infections. Conclusion: Biomarkers showed promising performances to improve the ED's infectious stratification.


Subject(s)
Bacterial Infections/diagnosis , Biomarkers/blood , Virus Diseases/diagnosis , Adult , Bacterial Infections/physiopathology , C-Reactive Protein/analysis , Emergency Service, Hospital , Female , Fever , Flow Cytometry , HLA Antigens/blood , Humans , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , Procalcitonin/blood , Receptors, IgG/blood , Sensitivity and Specificity , Sialic Acid Binding Ig-like Lectin 1/blood , Virus Diseases/physiopathology
20.
Blood Adv ; 3(24): 4238-4251, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31869411

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive leukemia for which we developed a nationwide network to collect data from new cases diagnosed in France. In a retrospective, observational study of 86 patients (2000-2013), we described clinical and biological data focusing on morphologies and immunophenotype. We found expression of markers associated with plasmacytoid dendritic cell origin (HLA-DRhigh, CD303+, CD304+, and cTCL1+) plus CD4 and CD56 and frequent expression of isolated markers from the myeloid, B-, and T-lymphoid lineages, whereas specific markers (myeloperoxidase, CD14, cCD3, CD19, and cCD22) were not expressed. Fifty-one percent of cytogenetic abnormalities impact chromosomes 13, 12, 9, and 15. Myelemia was associated with an adverse prognosis. We categorized chemotherapeutic regimens into 5 groups: acute myeloid leukemia (AML)-like, acute lymphoid leukemia (ALL)-like, lymphoma (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP])-like, high-dose methotrexate with asparaginase (Aspa-MTX) chemotherapies, and not otherwise specified (NOS) treatments. Thirty patients received allogeneic hematopoietic cell transplantation (allo-HCT), and 4 patients received autologous hematopoietic cell transplantation. There was no difference in survival between patients receiving AML-like, ALL-like, or Aspa-MTX regimens; survival was longer in patients who received AML-like, ALL-like, or Aspa-MTX regimens than in those who received CHOP-like regimens or NOS. Eleven patients are in persistent complete remission after allo-HCT with a median survival of 49 months vs 8 for other patients. Our series confirms a high response rate with a lower toxicity profile with the Aspa-MTX regimen, offering the best chance of access to hematopoietic cell transplantation and a possible cure.


Subject(s)
Dendritic Cells/pathology , Leukemia/diagnosis , Leukemia/therapy , Acute Disease , Biomarkers , Blood Cell Count , Bone Marrow/pathology , Chromosome Aberrations , Clonal Evolution/genetics , Dendritic Cells/metabolism , Disease Management , Hematopoietic Stem Cell Transplantation , Humans , Immunophenotyping , Leukemia/etiology , Leukemia/metabolism , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...