Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 41(1): 108-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34826348

ABSTRACT

Gypsum (CaSO4 ∙2H2 O) amendment is a promising way of decreasing the phosphorus loading of arable lands, and thus preventing aquatic eutrophication. However, in freshwaters with low sulfate concentrations, gypsum-released sulfate may pose a threat to the biota. To assess such risks, we performed a series of sulfate toxicity tests in the laboratory and conducted field surveys. These field surveys were associated with a large-scale pilot exercise involving spreading gypsum on agricultural fields covering 18% of the Savijoki River (Finland) catchment area. The gypsum amendment in such fields resulted in approximately a four-fold increase in the mean sulfate concentration for a 2-month period, and a transient, early peak reaching approximately 220 mg/L. The sulfate concentration gradually decreased almost to the pregypsum level after 3 years. Laboratory experiments with Unio crassus mussels and gypsum-spiked river water showed significant effects on foot movement activity, which was more intense with the highest sulfate concentration (1100 mg/L) than with the control. Survival of the glochidia after 24 and 48 h of exposure was not significantly affected by sulfate concentrations up to 1000 mg/L, nor was the length growth of the moss Fontinalis antipyretica affected. The field studies on benthic algal biomass accrual, mussel and fish density, and Salmo trutta embryo survival did not show gypsum amendment effects. Gypsum treatment did not raise the sulfate concentrations even to a level just close to critical for the biota studied. However, because the effects of sulfate are dependent on both the spatial and the temporal contexts, we advocate water quality and biota monitoring with proper temporal and spatial control in rivers within gypsum treatment areas. Environ Toxicol Chem 2022;41:108-121. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Biota , Calcium Sulfate/toxicity , Risk Assessment , Rivers , Sulfates , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Arch Environ Contam Toxicol ; 79(2): 270-281, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32696228

ABSTRACT

One of the world's largest, but low-grade, sulfide nickel deposits in northeastern Finland has been exploited by a bioheapleaching technology since 2008. Bioheapleaching is a relatively new, cost-effective technology, but humid climate, e.g., in boreal temperate environments, causes challenges to the management of the water balance in the ore heaps with wide catchment area, and the mining effluents have caused substantial metal and salting contamination of the receiving waterbodies. In our study, the impacts of metal-extracting bioheapleaching mine effluents on muscle and liver element concentrations, body condition, liver and testes mass, and sperm count and motility of male perch Perca fluviatilis were analysed. Liver, testes, and carcass mass of perch in relation to their length were lower in the mining-impacted lakes than in the reference lake, which may be due to the metal contamination, food availability, and energy demand under multistressor conditions. The sperm counts of the males in the mining-impacted lakes were lower, but the endurance of their sperm motility was longer than the endurance of sperm of the reference males. These findings suggested that the condition and sperm characteristics of perch were altered in lakes receiving metal mining effluents. Measured variables seem to be useful indicators for metal mining impacts on freshwater fish but only if high natural variation in these characteristics can be controlled by multiyear monitoring scheme.


Subject(s)
Metals/toxicity , Mining , Perches/physiology , Spermatozoa/physiology , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring , Finland , Humans , Lakes , Liver/chemistry , Male , Metals/analysis , Nickel , Sperm Motility , Water Pollutants, Chemical/analysis
3.
Arch Environ Contam Toxicol ; 76(1): 51-65, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30218120

ABSTRACT

The applicability of an in situ incubation method in monitoring the effects of metal mining on early life stages of fish was evaluated by investigating the impacts of a biomining technology utilizing mine on the mortality, growth, and yolk consumption of brown trout (Salmo trutta) and whitefish (Coregonus lavaretus) embryos. Newly fertilized eggs were incubated from autumn 2014 to spring 2015 in six streams under the influence of the mine located in North-Eastern Finland and in six reference streams. Although the impacted streams clearly had elevated concentrations of several metals and sulfate, the embryonic mortality of the two species did not differ between the impacted and the reference streams. Instead, particle accumulation to some cylinders had a significant impact on the embryonic mortality of both species. In clean cylinders, mortality was higher in streams with lower minimum pH. However, low pH levels were evident in both the reference and the mine-impacted groups. The embryonic growth of neither species was impacted by the mining activities, and the growth and yolk consumption of the embryos was mainly regulated by water temperature. Surprisingly, whitefish embryos incubated in streams with lower minimum pH had larger body size. In general, the applied in situ method is applicable in boreal streams for environmental assessment and monitoring, although in our study, we did not observe a specific mining impact differing from the effects of other environmental factors related to catchment characteristics.


Subject(s)
Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Environmental Monitoring/methods , Mining , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Animals , Finland , Metals/analysis , Metals/toxicity , Salmonidae/embryology , Seasons , Sulfates/analysis , Sulfates/toxicity , Trout/embryology , Water Pollutants, Chemical/analysis
4.
Environ Monit Assess ; 189(7): 357, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28656558

ABSTRACT

Compared with sporadic conventional water sampling, continuous water-quality monitoring with optical sensors has improved our understanding of freshwater dynamics. The basic principle in photometric measurements is the incident light at a given wavelength that is either reflected, scattered, or transmitted in the body of water. Here, we discuss the transmittance measurements. The amount of transmittance is inversely proportional to the concentration of the substance measured. However, the transmittance is subject to interference, because it can be affected by factors other than the substance targeted in the water. In this study, interference with the UV/Vis sensor nitrate plus nitrite measurements caused by organic carbon was evaluated. Total or dissolved organic carbon as well as nitrate plus nitrite concentrations were measured in various boreal waters with two UV/Vis sensors (5-mm and 35-mm pathlengths), using conventional laboratory analysis results as references. Organic carbon increased the sensor nitrate plus nitrite results, not only in waters with high organic carbon concentrations, but also at the lower concentrations (< 10 mg C L-1) typical of boreal stream, river, and lake waters. Our results demonstrated that local calibration with multiple linear regression, including both nitrate plus nitrite and dissolved organic carbon, can correct the error caused by organic carbon. However, high-frequency optical sensors continue to be excellent tools for environmental monitoring when they are properly calibrated for the local water matrix.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Calibration , Carbon/analysis , Fresh Water/analysis , Nitrates/analysis , Nitrites/analysis , Nitrogen Oxides/analysis , Rivers , Water/analysis
5.
Environ Toxicol Chem ; 36(5): 1343-1353, 2017 05.
Article in English | MEDLINE | ID: mdl-27791289

ABSTRACT

European whitefish (Coregonus lavaretus) embryos and larvae were exposed to 6 different manganese sulfate (MnSO4 ) concentrations from fertilization to the 3-d-old larvae. The fertilization success, offspring survival, larval growth, yolk consumption, embryonic and larval Mn tissue concentrations, and transcript levels of detoxification-related genes were measured in the long-term incubation. A full factorial breeding design (4 females × 2 males) allowed examination of the significance of both female and male effects, as well as female-male interactions in conjunction with the MnSO4 exposure in terms of the observed endpoints. The MnSO4 exposure reduced the survival of the whitefish early life stages. The offspring MnSO4 tolerance also was affected by the female parent, and the female-specific mean lethal concentrations (LC50s) varied from 42.0 mg MnSO4 /L to 84.6 mg MnSO4 /L. The larval yolk consumption seemed slightly inhibited at the exposure concentration of 41.8 mg MnSO4 /L. The MnSO4 exposure caused a significant induction of metallothionein-A (mt-a) and metallothionein-B (mt-b) in the 3-d-old larvae, and at the exposure concentration of 41.8 mg MnSO4 /L the mean larval mt-a and mt-b expressions were 47.5% and 56.6% higher, respectively, than at the control treatment. These results illustrate that whitefish reproduction can be impaired in waterbodies that receive Mn and SO4 in concentrations substantially above the typical levels in boreal freshwaters, but the offspring tolerance can be significantly affected by the parents and in particular the female parent. Environ Toxicol Chem 2017;36:1343-1353. © 2016 SETAC.


Subject(s)
Drug Tolerance , Salmonidae/metabolism , Sulfates/toxicity , Animals , Female , Gene Expression/drug effects , Larva/drug effects , Lethal Dose 50 , Male , Manganese Compounds , Metallothionein/metabolism , Ovum/drug effects , Ovum/metabolism , Paternal Exposure , Salmonidae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL