Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Am J Physiol Heart Circ Physiol ; 323(3): H513-H522, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35867711

ABSTRACT

Mixed lineage kinase 3 (MLK3) modulates blood pressure and left ventricular function, but the mechanisms governing these effects remain unclear. In the current study, we therefore investigated the role of the MLK3 Cdc42/Rac interactive binding (CRIB) domain in cardiovascular physiology. We examined baseline and left ventricular pressure overload responses in a MLK3 CRIB mutant (MLK3C/C) mouse, which harbors point mutations in the CRIB domain to disrupt MLK3 activation by Cdc42. Male and female MLK3C/C mice displayed increased invasively measured blood pressure compared with wild-type (MLK3+/+) littermate controls. MLK3C/C mice of both sexes also developed left and right ventricular hypertrophy but normal baseline LV function by echocardiography and invasive hemodynamics. In LV tissue from MLK3C/C mice, map3k11 mRNA, which encodes MLK3, and MLK3 protein were reduced by 74 ± 6% and 73 ± 7%, respectively. After 1-wk LV pressure overload with 25-gauge transaortic constriction (TAC), male MLK3C/C mice developed no differences in LV hypertrophy but displayed reduction in the LV systolic indices ejection fraction and dP/dt normalized to instantaneous pressure. JNK activation was also reduced in LV tissue of MLK3C/C TAC mice. TAC induced MLK3 translocation from cytosolic fraction to membrane fraction in LV tissue from MLK3+/+ but not MLK3C/C mice. These findings identify a role of the MLK3 CRIB domain in MLK3 regulation of basal blood pressure and cardiac morphology, and in promoting the compensatory LV response to pressure overload.NEW & NOTEWORTHY Here, we identified that the presence of two discrete point mutations within the Cdc42/Rac interaction and binding domain of the protein MLK3 recapitulates the effects of whole body MLK3 deletion on blood pressure, cardiac hypertrophy, and left ventricular compensation after pressure overload. These findings implicate the CRIB domain, and thus MLK3 activation by this domain, as critical for maintenance of cardiovascular homeostasis.


Subject(s)
Cardiomegaly , Ventricular Function, Left , Animals , Blood Pressure , Cardiomegaly/metabolism , Female , Hypertrophy, Left Ventricular , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mice, Inbred C57BL , Protein Domains , Ventricular Remodeling/physiology , Mitogen-Activated Protein Kinase Kinase Kinase 11
2.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: mdl-34324442

ABSTRACT

cGMP-dependent protein kinase 1α (PKG1α) promotes left ventricle (LV) compensation after pressure overload. PKG1-activating drugs improve heart failure (HF) outcomes but are limited by vasodilation-induced hypotension. Signaling molecules that mediate PKG1α cardiac therapeutic effects but do not promote PKG1α-induced hypotension could therefore represent improved therapeutic targets. We investigated roles of mixed lineage kinase 3 (MLK3) in mediating PKG1α effects on LV function after pressure overload and in regulating BP. In a transaortic constriction HF model, PKG activation with sildenafil preserved LV function in MLK3+/+ but not MLK3-/- littermates. MLK3 coimmunoprecipitated with PKG1α. MLK3-PKG1α cointeraction decreased in failing LVs. PKG1α phosphorylated MLK3 on Thr277/Ser281 sites required for kinase activation. MLK3-/- mice displayed hypertension and increased arterial stiffness, though PKG stimulation with sildenafil or the soluble guanylate cyclase (sGC) stimulator BAY41-2272 still reduced BP in MLK3-/- mice. MLK3 kinase inhibition with URMC-099 did not affect BP but induced LV dysfunction in mice. These data reveal MLK3 as a PKG1α substrate mediating PKG1α preservation of LV function but not acute PKG1α BP effects. Mechanistically, MLK3 kinase-dependent effects preserved LV function, whereas MLK3 kinase-independent signaling regulated BP. These findings suggest augmenting MLK3 kinase activity could preserve LV function in HF but avoid hypotension from PKG1α activation.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Heart Failure/physiopathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Ventricular Dysfunction, Left/physiopathology , Animals , Aorta/pathology , Blood Pressure/drug effects , Blood Pressure/genetics , HEK293 Cells , Heart Failure/complications , Humans , Hypertension/genetics , MAP Kinase Kinase Kinases/antagonists & inhibitors , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Sildenafil Citrate/pharmacology , Vascular Stiffness/genetics , Vasodilator Agents/pharmacology , Ventricular Dysfunction, Left/etiology , Mitogen-Activated Protein Kinase Kinase Kinase 11
4.
Circ Heart Fail ; 14(2): e007279, 2021 02.
Article in English | MEDLINE | ID: mdl-33517669

ABSTRACT

BACKGROUND: Mineralocorticoid receptor (MR) antagonists decrease heart failure (HF) hospitalization and mortality, but the mechanisms are unknown. Preclinical studies reveal that the benefits on cardiac remodeling and dysfunction are not completely explained by inhibition of MR in cardiomyocytes, fibroblasts, or endothelial cells. The role of MR in smooth muscle cells (SMCs) in HF has never been explored. METHODS: Male mice with inducible deletion of MR from SMCs (SMC-MR-knockout) and their MR-intact littermates were exposed to HF induced by 27-gauge transverse aortic constriction versus sham surgery. HF phenotypes and mechanisms were measured 4 weeks later using cardiac ultrasound, intracardiac pressure measurements, exercise testing, histology, cardiac gene expression, and leukocyte flow cytometry. RESULTS: Deletion of MR from SMC attenuated transverse aortic constriction-induced HF with statistically significant improvements in ejection fraction, cardiac stiffness, chamber dimensions, intracardiac pressure, pulmonary edema, and exercise capacity. Mechanistically, SMC-MR-knockout protected from adverse cardiac remodeling as evidenced by decreased cardiomyocyte hypertrophy and fetal gene expression, interstitial and perivascular fibrosis, and inflammatory and fibrotic gene expression. Exposure to pressure overload resulted in a statistically significant decline in cardiac capillary density and coronary flow reserve in MR-intact mice. These vascular parameters were improved in SMC-MR-knockout mice compared with MR-intact littermates exposed to transverse aortic constriction. CONCLUSIONS: These results provide a novel paradigm by which MR inhibition may be beneficial in HF by blocking MR in SMC, thereby improving cardiac blood supply in the setting of pressure overload-induced hypertrophy, which in turn mitigates the adverse cardiac remodeling that contributes to HF progression and symptoms.


Subject(s)
Heart Failure/genetics , Myocytes, Smooth Muscle/metabolism , Receptors, Mineralocorticoid/genetics , Ventricular Remodeling/genetics , Animals , Aorta/surgery , Arterial Pressure , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Constriction, Pathologic , Disease Models, Animal , Echocardiography , Gene Knockout Techniques , Heart Failure/diagnostic imaging , Heart Failure/pathology , Heart Failure/physiopathology , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/physiology
5.
Circ Heart Fail ; 14(1): e007300, 2021 01.
Article in English | MEDLINE | ID: mdl-33464954

ABSTRACT

BACKGROUND: Augmentation of NP (natriuretic peptide) receptor and cyclic guanosine monophosphate (cGMP) signaling has emerged as a therapeutic strategy in heart failure (HF). cGMP-specific PDE9 (phosphodiesterase 9) inhibition increases cGMP signaling and attenuates stress-induced hypertrophic heart disease in preclinical studies. A novel cGMP-specific PDE9 inhibitor, CRD-733, is currently being advanced in human clinical studies. Here, we explore the effects of chronic PDE9 inhibition with CRD-733 in the mouse transverse aortic constriction pressure overload HF model. METHODS: Adult male C57BL/6J mice were subjected to transverse aortic constriction and developed significant left ventricular (LV) hypertrophy after 7 days (P<0.001). Mice then received daily treatment with CRD-733 (600 mg/kg per day; n=10) or vehicle (n=17), alongside sham-operated controls (n=10). RESULTS: CRD-733 treatment reversed existing LV hypertrophy compared with vehicle (P<0.001), significantly improved LV ejection fraction (P=0.009), and attenuated left atrial dilation (P<0.001), as assessed by serial echocardiography. CRD-733 prevented elevations in LV end diastolic pressures (P=0.037) compared with vehicle, while lung weights, a surrogate for pulmonary edema, were reduced to sham levels. Chronic CRD-733 treatment increased plasma cGMP levels compared with vehicle (P<0.001), alongside increased phosphorylation of Ser273 of cardiac myosin binding protein-C, a cGMP-dependent protein kinase I phosphorylation site. CONCLUSIONS: The PDE9 inhibitor, CRD-733, improves key hallmarks of HF including LV hypertrophy, LV dysfunction, left atrial dilation, and pulmonary edema after pressure overload in the mouse transverse aortic constriction HF model. Additionally, elevated plasma cGMP may be used as a biomarker of target engagement. These findings support future investigation into the therapeutic potential of CRD-733 in human HF.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Heart Failure/physiopathology , Heart/drug effects , Hypertrophy, Left Ventricular/physiopathology , Phosphodiesterase Inhibitors/pharmacology , Stroke Volume/drug effects , Ventricular Remodeling/drug effects , Animals , Aorta/surgery , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Collagen/drug effects , Collagen/metabolism , Constriction, Pathologic , Cyclic GMP/blood , Cyclic GMP-Dependent Protein Kinase Type I/drug effects , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Fibrosis , Heart/physiopathology , Heart Atria/drug effects , Heart Failure/pathology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/pathology , Hypertrophy, Left Ventricular/pathology , Lung/drug effects , Male , Mice , Organ Size , Phosphorylation/drug effects , Pulmonary Edema/physiopathology
6.
J Card Fail ; 26(9): 769-775, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32464187

ABSTRACT

BACKGROUND: Combined angiotensin receptor/neprilysin inhibition with sacubitril/valsartan (Sac/Val) has emerged as a therapy for heart failure. The presumed mechanism of benefit is through prevention of natriuretic peptide degradation, leading to increased cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) signaling. However, the specific requirement of PKG for Sac/Val effects remains untested. METHODS AND RESULTS: We examined Sac/Val treatment in mice with mutation of the cGMP-dependent protein kinase I (PKGI)α leucine zipper domain, which is required for cGMP-PKGIα antiremodeling actions in vivo. Wild-type (WT) or PKG leucine zipper mutant (LZM) mice were exposed to 56-day left ventricular (LV) pressure overload by moderate (26G) transaortic constriction (TAC). At day 14 after TAC, mice were randomized to vehicle or Sac/Val by oral gavage. TAC induced the same degree of LV pressure overload in WT and LZM mice, which was not affected by Sac/Val. Although LZM mice, but not WT, developed LV dilation after TAC, Sac/Val improved cardiac hypertrophy and LV fractional shortening to the same degree in both the WT and LZM TAC mice. CONCLUSION: These findings indicate the beneficial effects of Sac/Val on LV structure and function in moderate pressure overload. The unexpected finding that PKGIα mutation does not abolish the Sac/Val effects on cardiac hypertrophy and on LV function suggests that signaling other than natriuretic peptide- cGMP-PKG mediates the therapeutic benefits of neprilysin inhibition in heart failure.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Heart Failure , Valsartan , Ventricular Function, Left , Aminobutyrates/administration & dosage , Animals , Biphenyl Compounds/administration & dosage , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Drug Combinations , Guanosine Monophosphate/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Male , Mice , Mice, Inbred C57BL , Random Allocation , Valsartan/administration & dosage , Ventricular Function, Left/drug effects
7.
Sci Rep ; 9(1): 5844, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30971724

ABSTRACT

Transverse aortic constriction (TAC) is a well-established model of pressure overload-induced cardiac hypertrophy and failure in mice. The degree of constriction "tightness" dictates the TAC severity and is determined by the gauge (G) of needle used. Though many reports use the TAC model, few studies have directly compared the range of resulting phenotypes. In this study adult male mice were randomized to receive TAC surgery with varying degrees of tightness: mild (25G), moderate (26G) or severe (27G) for 4 weeks, alongside sham-operated controls. Weekly echocardiography and terminal haemodynamic measurements determined cardiac remodelling and function. All TAC models induced significant, severity-dependent left ventricular hypertrophy and diastolic dysfunction compared to sham mice. Mice subjected to 26G TAC additionally exhibited mild systolic dysfunction and cardiac fibrosis, whereas mice in the 27G TAC group had more severe systolic and diastolic dysfunction, severe cardiac fibrosis, and were more likely to display features of heart failure, such as elevated plasma BNP. We also observed renal atrophy in 27G TAC mice, in the absence of renal structural, functional or gene expression changes. 25G, 26G and 27G TAC produced different responses in terms of cardiac structure and function. These distinct phenotypes may be useful in different preclinical settings.


Subject(s)
Aorta, Thoracic/surgery , Disease Models, Animal , Heart Failure/pathology , Hypertrophy, Left Ventricular/physiopathology , Myocardium/pathology , Ventricular Dysfunction, Left/physiopathology , Animals , Constriction, Pathologic , Fibrosis/physiopathology , Male , Mice , Mice, Inbred C57BL , Phenotype , Random Allocation
8.
Am J Physiol Heart Circ Physiol ; 316(1): H145-H159, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30362822

ABSTRACT

Myocardial hypertrophy is an independent risk factor for heart failure (HF), yet the mechanisms underlying pathological cardiomyocyte growth are incompletely understood. The c-Jun NH2-terminal kinase (JNK) signaling cascade modulates cardiac hypertrophic remodeling, but the upstream factors regulating myocardial JNK activity remain unclear. In this study, we sought to identify JNK-activating molecules as novel regulators of cardiac remodeling in HF. We investigated mixed lineage kinase-3 (MLK3), a master regulator of upstream JNK-activating kinases, whose role in the remodeling process had not previously been studied. We observed increased MLK3 protein expression in myocardium from patients with nonischemic and hypertrophic cardiomyopathy and in hearts of mice subjected to transverse aortic constriction (TAC). Mice with genetic deletion of MLK3 (MLK3-/-) exhibited baseline cardiac hypertrophy with preserved cardiac function. MLK3-/- mice subjected to chronic left ventricular (LV) pressure overload (TAC, 4 wk) developed worsened cardiac dysfunction and increased LV chamber size compared with MLK3+/+ littermates ( n = 8). LV mass, pathological markers of hypertrophy ( Nppa, Nppb), and cardiomyocyte size were elevated in MLK3-/- TAC hearts. Phosphorylation of JNK, but not other MAPK pathways, was selectively impaired in MLK3-/- TAC hearts. In adult rat cardiomyocytes, pharmacological MLK3 kinase inhibition using URMC-099 blocked JNK phosphorylation induced by neurohormonal agents and oxidants. Sustained URMC-099 exposure induced cardiomyocyte hypertrophy. These data demonstrate that MLK3 prevents adverse cardiac remodeling in the setting of pressure overload. Mechanistically, MLK3 activates JNK, which in turn opposes cardiomyocyte hypertrophy. These results support modulation of MLK3 as a potential therapeutic approach in HF. NEW & NOTEWORTHY Here, we identified a role for mixed lineage kinase-3 (MLK3) as a novel antihypertrophic and antiremodeling molecule in response to cardiac pressure overload. MLK3 regulates phosphorylation of the stress-responsive JNK kinase in response to pressure overload and in cultured cardiomyocytes stimulated with hypertrophic agonists and oxidants. This study reveals MLK3-JNK signaling as a novel cardioprotective signaling axis in the setting of pressure overload.


Subject(s)
Cardiomegaly/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System , Animals , Cardiac Output , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cells, Cultured , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Ventricular Remodeling , Mitogen-Activated Protein Kinase Kinase Kinase 11
9.
Diabetes ; 67(8): 1524-1537, 2018 08.
Article in English | MEDLINE | ID: mdl-29764860

ABSTRACT

Women gain weight and their diabetes risk increases as they transition through menopause; these changes can be partly reversed by hormone therapy. However, the underlying molecular mechanisms mediating these effects are unknown. A novel knock-in mouse line with the selective blockade of the membrane-initiated estrogen receptor (ER) pathway was used, and we found that the lack of this pathway precipitated excessive weight gain and glucose intolerance independent of food intake and that this was accompanied by impaired adaptive thermogenesis and reduced physical activity. Notably, the central activation of protein phosphatase (PP) 2A improved metabolic disorders induced by the lack of membrane-initiated ER signaling. Furthermore, the antiobesity effect of estrogen replacement in a murine menopause model was abolished by central PP2A inactivation. These findings define a critical role for membrane-initiated ER signaling in metabolic homeostasis via the central action of PP2A.


Subject(s)
Estrogen Receptor alpha/agonists , Estrogen Replacement Therapy , Glucose Intolerance/prevention & control , Menopause , Obesity/prevention & control , Protein Phosphatase 2/metabolism , Signal Transduction/drug effects , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/pathology , Adiposity/drug effects , Amino Acid Substitution , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Enzyme Activation/drug effects , Estradiol/pharmacology , Estradiol/therapeutic use , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Knock-In Techniques , Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Insulin Resistance , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Ovariectomy , Point Mutation , Protein Phosphatase 2/chemistry
10.
Circulation ; 138(5): 513-526, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29487140

ABSTRACT

BACKGROUND: Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-ß1) promotes cardiac fibrosis, but also activates counterregulatory pathways that serve to regulate TGF-ß1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFß family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFß coreceptor that promotes TGF-ß1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3, and, furthermore, that neutralizing endoglin activity promotes BMP9 activity. METHODS: We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We used the transverse aortic constriction-induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. RESULTS: BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and a small interfering RNA approach. In BMP9-/- mice subjected to transverse aortic constriction, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to transverse aortic constriction with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 in comparison with vehicle-treated controls. Because endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to transverse aortic constriction-induced heart failure limits collagen production, increases BMP9 protein levels, and increases levels of pSmad1, not pSmad3. CONCLUSIONS: Our results identify a novel functional role for BMP9 as an endogenous inhibitor of cardiac fibrosis attributable to LV pressure overload and further show that treatment with either recombinant BMP9 or disruption of endoglin activity promotes BMP9 activity and limits cardiac fibrosis in heart failure, thereby providing potentially novel therapeutic approaches for patients with heart failure.


Subject(s)
Growth Differentiation Factor 2/metabolism , Growth Differentiation Factors/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Disease Models, Animal , Endoglin/deficiency , Endoglin/genetics , Endoglin/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Growth Differentiation Factor 2/deficiency , Growth Differentiation Factor 2/genetics , Growth Differentiation Factors/genetics , Haploinsufficiency , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , Phosphorylation , Recovery of Function , Signal Transduction , Smad1 Protein/metabolism , Smad3 Protein/metabolism
11.
Cardiovasc Pathol ; 31: 26-33, 2017.
Article in English | MEDLINE | ID: mdl-28820968

ABSTRACT

INTRODUCTION: Activin receptor-like kinase 1 (ALK1) mediates signaling via the transforming growth factor beta-1 (TGFß1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. HYPOTHESIS: We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. METHODS AND RESULTS: In patients with advanced heart failure referred for left ventricular (LV) assist device implantation, LV Alk1 mRNA and protein levels were lower than control LV obtained from patients without heart failure. To investigate the role of ALK1 in heart failure, Alk1 haploinsufficient (Alk1+/-) and wild-type (WT) mice were studied 2 weeks after severe transverse aortic constriction (TAC). LV and lung weights were higher in Alk1+/- mice after TAC. Cardiomyocyte area and LV mRNA levels of brain natriuretic peptide and ß-myosin heavy chain were increased similarly in Alk1+/- and WT mice after TAC. Alk-1 mice exhibited reduced Smad 1 phosphorylation and signaling compared to WT mice after TAC. Compared to WT, LV fibrosis and Type 1 collagen mRNA and protein levels were higher in Alk1+/- mice. LV fractional shortening was lower in Alk1+/- mice after TAC. CONCLUSIONS: Reduced expression of ALK1 promotes cardiac fibrosis and impaired LV function in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required.


Subject(s)
Activin Receptors, Type II/metabolism , Heart Failure/metabolism , Myocardium/pathology , Ventricular Remodeling/physiology , Activin Receptors, Type I/metabolism , Adult , Animals , Female , Fibrosis/metabolism , Heart Failure/pathology , Humans , Male , Mice , Middle Aged , Myocardium/metabolism
12.
Heart Vessels ; 32(5): 628-636, 2017 May.
Article in English | MEDLINE | ID: mdl-28213819

ABSTRACT

Activin like kinase-1 (AlK-1) mediates signaling via the transforming growth factor beta (TGFß) family of ligands. AlK-1 activity promotes endothelial proliferation and migration. Reduced AlK-1 activity is associated with arteriovenous malformations. No studies have examined the effect of global AlK-1 deletion on indices of cardiac remodeling. We hypothesized that reduced levels of AlK-1 promote maladaptive cardiac remodeling. To test this hypothesis, we employed AlK-1 conditional knockout mice (cKO) harboring the ROSA26-CreER knock-in allele, whereby a single dose of intraperitoneal tamoxifen triggered ubiquitous Cre recombinase-mediated excision of floxed AlK-1 alleles. Tamoxifen treated wild-type (WT-TAM; n = 5) and vehicle treated AlK-1-cKO mice (cKO-CON; n = 5) served as controls for tamoxifen treated AlK-1-cKO mice (cKO-TAM; n = 15). AlK-1 cKO-TAM mice demonstrated reduced 14-day survival compared to cKO-CON controls (13 vs 100%, respectively, p < 0.01). Seven days after treatment, cKO-TAM mice exhibited reduced left ventricular (LV) fractional shortening, progressive LV dilation, and gastrointestinal bleeding. After 14 days total body mass was reduced, but LV and lung mass increased in cKO-TAM not cKO-CON mice. Peak LV systolic pressure, contractility, and arterial elastance were reduced, but LV end-diastolic pressure and stroke volume were increased in cKO-TAM, not cKO-CON mice. LV AlK-1 mRNA levels were reduced in cKO-TAM, not cKO-CON mice. LV levels of other TGFß-family ligands and receptors (AlK5, TBRII, BMPRII, Endoglin, BMP7, BMP9, and TGFß1) were unchanged between groups. Cardiomyocyte area and LV levels of BNP were increased in cKO-TAM mice, but LV levels of ß-MHC and SERCA were unchanged. No increase in markers of cardiac fibrosis, Type I collagen, CTGF, or PAI-1, were observed between groups. No differences were observed for any variable studied between cKO-CON and WT-TAM mice. Global deletion of AlK-1 is associated with the development of high output heart failure without maladaptive remodeling. Future studies exploring the functional role of AlK-1 in cardiac remodeling independent of systemic AVMs are required.


Subject(s)
Activin Receptors, Type I/genetics , Gene Expression Regulation , Heart Failure/genetics , RNA/genetics , Ventricular Function, Left/physiology , Ventricular Remodeling/physiology , Activin Receptors, Type I/biosynthesis , Activin Receptors, Type II , Alleles , Animals , Disease Models, Animal , Disease Progression , Heart Failure/metabolism , Heart Failure/physiopathology , Mice, Knockout , Real-Time Polymerase Chain Reaction , Signal Transduction
13.
PLoS One ; 11(6): e0156772, 2016.
Article in English | MEDLINE | ID: mdl-27276022

ABSTRACT

MicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We demonstrate that endogenous or over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. We report that there is a "seed region" of moR-21 as well as a "seed match region" in the target gene 3'UTR that are indispensable for moR-21-mediated gene down-regulation. We further demonstrate that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. Taken together, these findings provide the first evidence that microRNA offset RNA alters gene expression and is biologically active.


Subject(s)
3' Untranslated Regions , Argonaute Proteins/biosynthesis , Cell Proliferation , Down-Regulation , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Argonaute Proteins/genetics , Mice , MicroRNAs/genetics , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology
14.
J Am Heart Assoc ; 3(4)2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25015075

ABSTRACT

BACKGROUND: Right ventricular (RV) failure is a major cause of mortality worldwide and is often a consequence of RV pressure overload (RVPO). Endoglin is a coreceptor for the profibrogenic cytokine, transforming growth factor beta 1 (TGF-ß1). TGF-ß1 signaling by the canonical transient receptor protein channel 6 (TRPC-6) was recently reported to stimulate calcineurin-mediated myofibroblast transformation, a critical component of cardiac fibrosis. We hypothesized that reduced activity of the TGF-ß1 coreceptor, endoglin, limits RV calcineurin expression and improves survival in RVPO. METHODS AND RESULTS: We first demonstrate that endoglin is required for TGF-ß1-mediated calcineurin/TRPC-6 expression and up-regulation of alpha-smooth muscle antigen (α-SMA), a marker of myofibroblast transformation, in human RV fibroblasts. Using endoglin haploinsufficient mice (Eng(+/-)) we show that reduced endoglin activity preserves RV function, limits RV fibrosis, and attenuates activation of the calcineurin/TRPC-6/α-SMA pathway in a model of angio-obliterative pulmonary hypertension. Next, using Eng(+/-) mice or a neutralizing antibody (Ab) against endoglin (N-Eng) in wild-type mice, we show that reduced endoglin activity improves survival and attenuates RV fibrosis in models of RVPO induced by pulmonary artery constriction. To explore the utility of targeting endoglin, we observed a reversal of RV fibrosis and calcineurin levels in wild-type mice treated with a N-Eng Ab, compared to an immunoglobulin G control. CONCLUSION: These data establish endoglin as a regulator of TGF-ß1 signaling by calcineurin and TRPC-6 in the RV and identify it as a potential therapeutic target to limit RV fibrosis and improve survival in RVPO, a common cause of death in cardiac and pulmonary disease.


Subject(s)
Calcineurin/genetics , Hypertension, Pulmonary/genetics , Intracellular Signaling Peptides and Proteins/genetics , RNA, Messenger/metabolism , TRPC Cation Channels/genetics , Ventricular Dysfunction, Right/genetics , Actins/genetics , Actins/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Calcineurin/metabolism , Disease Models, Animal , Endoglin , Fibroblasts/metabolism , Heart Ventricles/cytology , Heart Ventricles/metabolism , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Knockout , Myofibroblasts/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Signal Transduction , Survival Rate , TRPC Cation Channels/metabolism , TRPC6 Cation Channel , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/physiopathology
15.
Diabetes ; 63(6): 2097-113, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24458356

ABSTRACT

Decreased heart rate variability (HRV) is a major risk factor for sudden death and cardiovascular disease. We previously demonstrated that parasympathetic dysfunction in the heart of the Akita type 1 diabetic mouse was due to a decrease in the level of the sterol response element-binding protein (SREBP-1). Here we demonstrate that hyperactivity of glycogen synthase kinase-3ß (GSK3ß) in the atrium of the Akita mouse results in decreased SREBP-1, attenuation of parasympathetic modulation of heart rate, measured as a decrease in the high-frequency (HF) fraction of HRV in the presence of propranolol, and a decrease in expression of the G-protein coupled inward rectifying K(+) (GIRK4) subunit of the acetylcholine (ACh)-activated inward-rectifying K(+) channel (IKACh), the ion channel that mediates the heart rate response to parasympathetic stimulation. Treatment of atrial myocytes with the GSK3ß inhibitor Kenpaullone increased levels of SREBP-1 and expression of GIRK4 and IKACh, whereas a dominant-active GSK3ß mutant decreased SREBP-1 and GIRK4 expression. In Akita mice treated with GSK3ß inhibitors Li(+) and/or CHIR-99021, Li(+) increased IKACh, and Li(+) and CHIR-99021 both partially reversed the decrease in HF fraction while increasing GIRK4 and SREBP-1 expression. These data support the conclusion that increased GSK3ß activity in the type 1 diabetic heart plays a critical role in parasympathetic dysfunction through an effect on SREBP-1, supporting GSK3ß as a new therapeutic target for diabetic autonomic neuropathy.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetic Neuropathies/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Glycogen Synthase Kinase 3/metabolism , Heart Rate , Myocytes, Cardiac/metabolism , Parasympathetic Nervous System/metabolism , Sterol Regulatory Element Binding Protein 1/drug effects , Animals , Blotting, Western , Cells, Cultured , Diabetes Mellitus, Type 1/physiopathology , Diabetic Neuropathies/physiopathology , Electrocardiography , Glycogen Synthase Kinase 3 beta , Heart Atria/physiopathology , Mice , Mice, Mutant Strains , Parasympathetic Nervous System/physiopathology , Patch-Clamp Techniques , Sterol Regulatory Element Binding Protein 1/metabolism
16.
PLoS One ; 8(7): e70802, 2013.
Article in English | MEDLINE | ID: mdl-23936252

ABSTRACT

UNLABELLED: Right ventricular (RV) failure is a major cause of mortality in acute or chronic lung disease and left heart failure. The objective of this study was to demonstrate a percutaneous approach to study biventricular hemodynamics in murine models of primary and secondary RV pressure overload (RVPO) and further explore biventricular expression of two key proteins that regulate cardiac remodeling: calcineurin and transforming growth factor beta 1 (TGFß1). METHODS: Adult, male mice underwent constriction of the pulmonary artery or thoracic aorta as models of primary and secondary RVPO, respectively. Conductance catheterization was performed followed by tissue analysis for changes in myocyte hypertrophy and fibrosis. RESULTS: Both primary and secondary RVPO decreased biventricular stroke work however RV instantaneous peak pressure (dP/dtmax) and end-systolic elastance (Ees) were preserved in both groups compared to controls. In contrast, left ventricular (LV) dP/dtmax and LV-Ees were unchanged by primary, but reduced in the secondary RVPO group. The ratio of RV:LV ventriculo-arterial coupling was increased in primary and reduced in secondary RVPO. Primary and secondary RVPO increased RV mass, while LV mass decreased in primary and increased in the secondary RVPO groups. RV fibrosis and hypertrophy were increased in both groups, while LV fibrosis and hypertrophy were increased in secondary RVPO only. RV calcineurin expression was increased in both groups, while LV expression increased in secondary RVPO only. Biventricular TGFß1 expression was increased in both groups. CONCLUSION: These data identify distinct effects of primary and secondary RVPO on biventricular structure, function, and expression of key remodeling pathways.


Subject(s)
Ventricular Dysfunction, Right/pathology , Ventricular Dysfunction, Right/physiopathology , Ventricular Pressure , Ventricular Remodeling , Animals , Calcineurin/metabolism , Disease Models, Animal , Fibrosis , Heart Conduction System , Heart Ventricles/metabolism , Heart Ventricles/pathology , Hemodynamics , Male , Mice , Organ Size , Transforming Growth Factor beta1/metabolism , Ventricular Dysfunction, Right/metabolism
17.
Arterioscler Thromb Vasc Biol ; 33(8): 1837-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23744991

ABSTRACT

OBJECTIVE: The proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in vascular diseases, such as atherosclerosis and restenosis, after percutaneous coronary intervention. Many studies have shown that estrogen inhibits VSMC proliferation in response to vascular injury in the mouse carotid injury model. However, the mechanisms that mediate these effects remain unclear. Here, we investigated the mechanisms by which estrogen inhibits VSMC proliferation. APPROACH AND RESULTS: We established a novel transgenic mouse line, referred to as the disrupting peptide mice, in which rapid estrogen receptor (ER)-mediated signaling is abolished by overexpression of a peptide that prevents the ER from forming a signaling complex necessary for rapid signaling. Carotid artery VSMCs from disrupting peptide mice or littermate wild-type female mice were obtained by the explant method. In VSMCs derived from wild-type mice, estrogen significantly inhibited VSMC proliferation. Phosphorylation levels of Akt and extracellular regulated kinase induced by platelet derived growth factor were significantly inhibited by estrogen pretreatment. Estrogen enhanced complex formation between ERα and protein phosphatase 2A (PP2), and enhanced PP2A activity. The blockade of PP2A activity abolished the estrogen-induced antiproliferative effect on VSMCs. In contrast, none of these effects of estrogen observed in the wild-type VSMCs were observed in VSMCs derived from disrupting peptide mice. These results support that rapid, non-nuclear ER signaling is required for estrogen-induced inhibition of VSMC proliferation, and further that PP2A activation by estrogen mediates estrogen-induced antiproliferative effects. CONCLUSIONS: These findings support that PP2A activation via rapid, non-nuclear ER signaling may be a novel target for therapeutic approaches to inhibit VSMC proliferation, which plays a central role in atherosclerosis and restenosis.


Subject(s)
Atherosclerosis/metabolism , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Muscle, Smooth, Vascular/metabolism , Phosphoprotein Phosphatases/metabolism , Signal Transduction/physiology , Animals , Atherosclerosis/physiopathology , Calmodulin-Binding Proteins/metabolism , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Estrogens/pharmacology , Female , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Nerve Tissue Proteins/metabolism , Peptide Fragments/metabolism , Phosphorylation/physiology , Protein Phosphatase 2C , Signal Transduction/drug effects
18.
J Thorac Cardiovasc Surg ; 145(6): 1642-9, 1649.e1, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22982037

ABSTRACT

OBJECTIVE: Vein graft failure rates resulting from adverse graft remodeling remain high with no effective therapy. The mineralocorticoid receptor (MR) plays a role in pathologic arterial remodeling. We demonstrated recently that the MR is upregulated in venous tissues after grafting and hypothesized that MR inhibition would reduce vein graft remodeling. METHODS: Reverse transcription polymerase chain reaction and immunoblotting were used to examine the expression of the MR and other components of the renin-angiotensin-aldosterone system in human vein and primary human saphenous vein smooth muscle cells (HSVSMC). Adenoviral reporter gene assays were used to explore MR transcriptional activity in HSVSMC. The effect of MR inhibition on vein graft remodeling in vivo was characterized in a mouse vein graft model. RESULTS: Messenger RNAs encoding the MR, 11-ß-hydroxysteroid dehydrogenase 2, angiotensin type 1 receptor, and the angiotensin-converting enzyme are expressed in whole HSVSMC. MR and 11-ß-hydroxysteroid dehydrogenase 2 protein expression is confirmed, and MR-dependent transcriptional regulation is demonstrated at physiologic aldosterone concentrations in HSVSMC. Treatment of mice with the MR antagonist spironolactone, at doses that do not lower blood pressure (20 mg/kg per day), reduces maximal vein graft intima-media thickness by 68%, with an associated reduction in graft inflammatory cell infiltration and fibrosis. CONCLUSIONS: MR is expressed in human venous tissue and cells and modulates gene expression in HSVSMC in response to physiologic aldosterone concentrations. In vivo, MR inhibition reduces vein graft thickening and inflammation. These preclinical data support the potential to use MR antagonists as novel treatments to preserve vein graft patency.


Subject(s)
Aorta/surgery , Graft Rejection/prevention & control , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Mineralocorticoid/metabolism , Renin-Angiotensin System/genetics , Spironolactone/pharmacology , Vascular Patency/drug effects , Vena Cava, Inferior/surgery , Aldosterone/pharmacology , Analysis of Variance , Animals , Aorta/drug effects , Aorta/metabolism , Disease Models, Animal , Gene Expression , Humans , Immunoblotting , Immunohistochemistry , Mice , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation , Vena Cava, Inferior/drug effects , Vena Cava, Inferior/metabolism
19.
Arterioscler Thromb Vasc Biol ; 33(2): 257-65, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23175673

ABSTRACT

OBJECTIVE: Estradiol (E2) regulates gene transcription by activating estrogen receptor-α and estrogen receptor-ß. Many of the genes regulated by E2 via estrogen receptors are repressed, yet the molecular mechanisms that mediate E2-induced gene repression are currently unknown. We hypothesized that E2, acting through estrogen receptors, regulates expression of microRNAs (miRs) leading to repression of expression of specific target genes. METHODS AND RESULTS: Here, we report that E2 significantly upregulates the expression of 26 miRs and downregulates the expression of 6 miRs in mouse aorta. E2-mediated upregulation of one of these miRs, miR-203, was chosen for further study. In cultured vascular smooth muscle cells (VSMC), E2-mediated upregulation of miR-203 is mediated by estrogen receptor-α (but not estrogen receptor-ß) via transcriptional upregulation of the primary miR. We demonstrate that the transcription factors Zeb-1 and AP-1 play critical roles in mediating E2-induced upregulation of miR-203 transcription. We show further that miR-203 mediates E2-induced repression of Abl1, and p63 protein abundance in VSMC. Finally, knocking-down miR-203 abolishes E2-mediated inhibition of VSMC proliferation, and overexpression of miR-203 inhibits cultured VSMC proliferation, but not vascular endothelial cell proliferation. CONCLUSIONS: Our findings demonstrate that E2 regulates expression of miRs in the vasculature and support the estrogen receptors-dependent induction of miRs as a mechanism for E2-mediated gene repression. Furthermore, our findings demonstrate that miR-203 contributes to E2-induced inhibition of VSMC proliferation and highlight the potential of miR-203 as a therapeutic agent in the treatment of proliferative cardiovascular diseases.


Subject(s)
Cell Proliferation , Estrogen Receptor alpha/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Binding Sites , Cells, Cultured , Estradiol/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Homeodomain Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Ovariectomy , Phosphoproteins/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-abl/metabolism , RNA Interference , Time Factors , Trans-Activators/metabolism , Transcription Factor AP-1/metabolism , Transcription, Genetic , Transfection , Zinc Finger E-box-Binding Homeobox 1
20.
Circulation ; 126(16): 1993-2004, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22997253

ABSTRACT

BACKGROUND: Clinical trial and epidemiological data support that the cardiovascular effects of estrogen are complex, including a mixture of both potentially beneficial and harmful effects. In animal models, estrogen protects females from vascular injury and inhibits atherosclerosis. These effects are mediated by estrogen receptors (ERs), which, when bound to estrogen, can bind to DNA to directly regulate transcription. ERs can also activate several cellular kinases by inducing a rapid nonnuclear signaling cascade. However, the biological significance of this rapid signaling pathway has been unclear. METHODS AND RESULTS: In the present study, we develop a novel transgenic mouse in which rapid signaling is blocked by overexpression of a peptide that prevents ERs from interacting with the scaffold protein striatin (the disrupting peptide mouse). Microarray analysis of ex vivo treated mouse aortas demonstrates that rapid ER signaling plays an important role in estrogen-mediated gene regulatory responses. Disruption of ER-striatin interactions also eliminates the ability of estrogen to stimulate cultured endothelial cell migration and to inhibit cultured vascular smooth muscle cell growth. The importance of these findings is underscored by in vivo experiments demonstrating loss of estrogen-mediated protection against vascular injury in the disrupting peptide mouse after carotid artery wire injury. CONCLUSIONS: Taken together, these results support the concept that rapid, nonnuclear ER signaling contributes to the transcriptional regulatory functions of ER and is essential for many of the vasoprotective effects of estrogen. These findings also identify the rapid ER signaling pathway as a potential target for the development of novel therapeutic agents.


Subject(s)
Carotid Artery Injuries/metabolism , Estradiol/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Muscle, Smooth, Vascular/physiology , Signal Transduction/physiology , Animals , Aorta/cytology , COS Cells , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Chlorocebus aethiops , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Ovariectomy , Pregnancy , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...