Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 358: 120781, 2024 May.
Article in English | MEDLINE | ID: mdl-38608570

ABSTRACT

Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.


Subject(s)
Bioreactors , Fermentation , Fruit and Vegetable Juices , Hypocreales , Sorghum , Sorghum/metabolism , Fruit and Vegetable Juices/analysis , Cellulase/metabolism , Malus
2.
J Pediatr Endocrinol Metab ; 37(5): 477-481, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38444307

ABSTRACT

OBJECTIVES: The genetic causes of pituitary stalk interruption syndrome (PSIS) remain elusive in 95 % of cases. The roundabout receptor-1 gene (ROBO1) plays critical roles in axonal guidance and cell migration. Recently, mutations in the ROBO1 gene have been reported patients with PSIS. CASE PRESENTATION: We report a 2.9-year-old boy with PSIS who presented with combined pituitary hormone deficiency, central diabetes insipidus, and the classical triad of MRI findings. Through clinical exome sequencing using next-generation sequencing techniques, a previously unidentified novel heterozygous frame shift mutation in the ROBO1 gene was identified. This is the first report of ROBO1 mutation associated with posterior pituitary dysfunction. CONCLUSIONS: We conclude and emphasize that ROBO1 should be investigated in patients with PSIS. Our case is unique in the published literature in that we are first time reporting posterior pituitary dysfunction as manifestation of ROBO1 mutation. The full clinical spectrum of the mutations may not be fully known.


Subject(s)
Diabetes Insipidus, Neurogenic , Hypopituitarism , Mutation , Nerve Tissue Proteins , Receptors, Immunologic , Roundabout Proteins , Humans , Male , Receptors, Immunologic/genetics , Receptors, Immunologic/deficiency , Nerve Tissue Proteins/genetics , Hypopituitarism/genetics , Hypopituitarism/diagnosis , Child, Preschool , Diabetes Insipidus, Neurogenic/genetics , Pituitary Gland/diagnostic imaging , Pituitary Gland/pathology , Pituitary Gland/abnormalities , Prognosis
4.
Bioprocess Biosyst Eng ; 41(7): 917-929, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29564535

ABSTRACT

Direct measurement of cell biomass is difficult in a solid-state fermentation (SSF) process involving filamentous fungi since the mycelium and the solid substrate are often inseparable. However, respiratory data are rich in information for real-time monitoring of microbial biomass production. In this regard, a correlation was obtained between oxygen uptake rate (OUR) and biomass concentration (X) of Rhizopus oryzae MTCC 1987, during phytase production, in an intermittently mixed novel SSF bioreactor. To obtain the correlation, various models describing sigmoidal growth were tested, namely the logistic, Gompertz, Stannard, and Schnute models. Regression analysis of experimental results, at different operating conditions of inlet air flow rate and relative humidity suggested that OUR and X were correlated well by the logistic model (R2 > 0.90). To corroborate the use of respiratory data for on-line measurement of metabolic activity, OUR was related to metabolic heat generation rate (Rq), and the logistic model was found to satisfactorily correlate Rq and X as well. The model parameter, YQ/X, when substituted into a heat transfer design equation, along with the values of other parameters and operating variables, gave reliable estimates of bed temperature. The correlations developed in the present study, between respiratory activity and biomass concentration may be extended on to other SSF processes for further validation and real-time monitoring of cell biomass and bed temperature.


Subject(s)
Biomass , Bioreactors , Models, Biological , Oxygen Consumption , Oxygen/metabolism , Rhizopus/growth & development
5.
J Biotechnol ; 269: 16-34, 2018 Mar 10.
Article in English | MEDLINE | ID: mdl-29408199

ABSTRACT

In recent years, substantial credibility in employing Solid-State Fermentation (SSF) technique has been witnessed owing to its numerous advantages over submerged fermentation (SmF). In spite of enormous advantages, true potential of SSF technology has not been fully realized at industrial scale. The lack of rational and scalable bioreactor designs backed by mathematical models and automated control system that could successfully address heterogeneity with respect to heat and mass, and also operate aseptically, remains the prime reason for it. As a result, there still exists vast scope in SSF bioreactor research and development to facilitate broad spectrum of biotechnological applications. The present article reviews state-of-the-art in SSF technology with focus on bioreactors that have been employed for bioprocess applications, in particular, enzyme production. Based on the mode of operation, bioreactors are divided into four categories with emphasis on design features, effect of operating conditions on productivity, applications and limitations. Selected modeling studies developed over the years, have been revised and presented in problem specific manner in order to address the limitations. Some interesting designs including few recent ones that have been proposed and/or employed at pilot and industrial levels are discussed in more detail.


Subject(s)
Bioreactors , Industrial Microbiology , Equipment Design , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...