Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38175410

ABSTRACT

The need for potable water consumption in urban and suburban regions can be decreased by greywater treatment and its reuse. Utilizing natural fibers may provide sustainable solutions in addressing challenges related to water resource management. In this study, a fixed-film reactor was designed with Luffa cylindrica (an annually occurring fruit) as a bio-carrier. The lab-scale reactors were configured with and without Luffa cylindrica and were run for 90 days in fed-batch mode. Scanning electron microscopy (SEM) was performed to validate biofilm production over time. Monitoring COD, nitrogen, and total phosphate removal allowed for analysis of treatment effectiveness. Results demonstrated the treatment efficiency for the experimental reactor was 70.96%, 97.02%, 92.57%, and 81.20% for COD, nitrogen, phosphate, and anionic surfactant (AS), respectively. 16 s rRNA gene sequencing of bio-carrier and control greywater samples was carried out. Many bacteria known to break down anionic surfactants were observed, and microbial succession was witnessed in the control reactor vs. the experimental reactor samples. The three most prevalent genera in the experimental samples were Chlorobium, Chlorobaculum, and Terrimonas. However, it is crucial to underscore that additional research is essential to solidify our understanding in this domain, with this study laying the fundamental groundwork.

2.
Sci Rep ; 13(1): 1026, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658277

ABSTRACT

Dengue virus (DENV) infection has increased worldwide, with over 400 million infections annually, and has become a serious public health concern. Several drug candidates, new and repurposed, have failed to meet the primary efficacy endpoints. We have recently shown that Aqueous Extract of the stem of Cocculus hirsutus (AQCH) was effective in vitro and in vivo against DENV and was safe in humans. We now report that an active ingredient of AQCH, Sinococuline, protects against the antibody-mediated secondary-DENV infection in the AG129 mouse model. DENV infection markers were assessed, viz. serum viremia and vital organs pathologies-viral load, proinflammatory cytokines and intestinal vascular leakage. The treatment with Sinococuline at 2.0 mg/kg/day; BID (twice a day), was the most effective in protecting the severely DENV-infected AG129 mice. Also, this dose effectively reduced serum viremia and tissue-viral load and inhibited the elevated expression levels of proinflammatory cytokines (TNF-α and IL-6) in several vital organs. Based on these findings, it could be explored further for pre-clinical and clinical developments for the treatment of dengue.


Subject(s)
Cocculus , Dengue Virus , Morphinans , Animals , Humans , Mice , Cocculus/chemistry , Cytokines/metabolism , Dengue Virus/drug effects , Disease Models, Animal , Viremia/drug therapy , Morphinans/pharmacology
3.
Heliyon ; 8(5): e09416, 2022 May.
Article in English | MEDLINE | ID: mdl-35582330

ABSTRACT

Background and aim: Dengue a worldwide concern for public health has no effective vaccine or drug available for its prevention or treatment. There are billions of people who are at risk of contracting the dengue virus (DENV) infections with only anti-mosquito strategies to combat this disease. Based on the reports, particularly in vitro studies and small animal studies showing anti-viral activity of aqueous extract of Cocculus hirsutus (AQCH), studies were conducted on AQCH tablets as a potential for the treatment of dengue and COVID-19 infections. The current study was part of the research on AQCH tablet formulation and was aimed to evaluate safety and pharmacokinetics in healthy human subjects. Materials and methods: Sixty healthy adult human subjects were divided into 5 groups (cohorts: I to V; n = 12 per cohort) and randomized in the ratio of 3:1 to receive active treatment or placebo in a blinded manner. Five doses 100 mg, 200 mg, 400 mg, 600 mg and 800 mg tablets were administered three times daily at an interval of 8 h for days 01-09 under fasting conditions and a single dose in morning on day 10. Safety assessment was based on monitoring the occurrence, pattern, intensity, and severity of adverse events during study period. Blood samples were collected for measurement of the bio-active marker Sinococuline concentrations by a validated LC-MS/MS method followed by pharmacokinetic evaluation. Results and conclusion: The test formulation was well tolerated in all cohorts. Sinococuline peak plasma concentration (Cmax) and total exposure of plasma concentration (AUC) demonstrated linearity up to 600 mg and saturation kinetics at 800 mg dose. There was no difference observed in elimination half-life for all the cohorts, suggesting absence of saturation in rate of elimination. Dose accumulation was observed and steady state was achieved within 3 days. The information on human pharmacokinetics of AQCH tablets would assist in further dose optimization with defined pharmacokinetic-pharmacodynamic relationship.

4.
Front Microbiol ; 12: 746110, 2021.
Article in English | MEDLINE | ID: mdl-34912307

ABSTRACT

Dengue is a serious public health concern worldwide, with ∼3 billion people at risk of contracting dengue virus (DENV) infections, with some suffering severe consequences of disease and leading to death. Currently, there is no broad use vaccine or drug available for the prevention or treatment of dengue, which leaves only anti-mosquito strategies to combat the dengue menace. The present study is an extension of our earlier study aimed at determining the in vitro and in vivo protective effects of a plant-derived phytopharmaceutical drug for the treatment of dengue. In our previous report, we had identified a methanolic extract of aerial parts of Cissampelos pareira to exhibit in vitro and in vivo anti-dengue activity against all the four DENV serotypes. The dried aerial parts of C. pareira supplied by local vendors were often found to be mixed with aerial parts of another plant of the same Menispermaceae family, Cocculus hirsutus, which shares common homology with C. pareira. In the current study, we have found C. hirsutus to have more potent anti-dengue activity as compared with C. pareira. The stem part of C. hirsutus was found to be more potent (∼25 times) than the aerial part (stem and leaf) irrespective of the extraction solvent used, viz., denatured spirit, hydro-alcohol (50:50), and aqueous. Moreover, the anti-dengue activity of stem extract in all the solvents was comparable. Hence, an aqueous extract of the stem of C. hirsutus (AQCH) was selected due to greater regulatory compliance. Five chemical markers, viz., Sinococuline, 20-Hydroxyecdysone, Makisterone-A, Magnoflorine, and Coniferyl alcohol, were identified in fingerprinting analysis. In a test of primary dengue infection in the AG129 mice model, AQCH extract at 25 mg/kg body weight exhibited protection when administered four and three times a day. The AQCH was also protective in the secondary DENV-infected AG129 mice model at 25 mg/kg/dose when administered four and three times a day. Additionally, the AQCH extract reduced serum viremia and small intestinal pathologies, viz., viral load, pro-inflammatory cytokines, and vascular leakage. Based on these findings, we have undertaken the potential preclinical development of C. hirsutus-based phytopharmaceutical, which could be studied further for its clinical development for treating dengue.

5.
Bioresour Technol ; 338: 125568, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34274579

ABSTRACT

Bioaugmentation in wastewater treatment plants (WWTPs) is challenging due to low survival and persistence of applied microbes. This study aimed to track the capacity and survival of fluorescent-tagged Pseudomonas oleovoransICTN13 as a model organism applicable in bioaugmentation of phenol-containing wastewater. The isolate was immobilized in alginate biopolymer, and enhanced efficacy and survival for biodegradation of phenol against free cells were studied. Encapsulated cells resulted in enhanced phenol removal efficiency (~94%) compared to free cells (~72%). Encapsulation of cells facilitated an extended storage time of 30 days. Remarkably, phenol and COD removal efficacy of encapsulated cells was sustained up to ~ 92-93% in a reactor after 45 days, while free cells could produce ~ 80-84% removal efficiency. Fluorescence microscopy showed high survival of the encapsulated cells, whereas gradual deterioration of free cells was observed. Thus, the findings highlight the importance of bio augmented strain in WWTPs where encapsulation is a crucial factor.


Subject(s)
Phenol , Pseudomonas oleovorans , Biodegradation, Environmental , Cells, Immobilized , Phenols , Wastewater
6.
EBioMedicine ; 54: 102738, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32305868

ABSTRACT

BACKGROUND: Zika virus (ZIKV), an arbovirus capable of causing neurological abnormalities, is a recognised human pathogen, for which a vaccine is required. As ZIKV antibodies can mediate antibody-dependent enhancement (ADE) of dengue virus (DENV) infection, a ZIKV vaccine must not only protect against ZIKV but must also not sensitise vaccinees to severe dengue. METHODS: The N-terminal 80% of ZIKV envelope protein (80E) was expressed in Pichia pastoris and its capacity to self-assemble into particulate structures evaluated using dynamic light scattering and electron microscopy. Antigenic integrity of the 80E protein was evaluated using ZIKV-specific monoclonal antibodies. Its immunogenicity and protective efficacy were assessed in BALB/c and C57BL/6 Stat2-/- mice, respectively. Its capacity to enhance DENV and ZIKV infection was assessed in AG129 and C57BL/6 Stat2-/- mice, respectively. FINDINGS: ZIKV-80E protein self-assembled into discrete nanoparticles (NPs), which preserved the antigenic integrity of neutralising epitopes on E domain III (EDIII) and elicited potent ZIKV-neutralising antibodies predominantly against this domain in BALB/c mice. These antibodies conferred statistically significant protection in vivo (p = 0.01, Mantel-Cox test), and did not exacerbate sub-lethal DENV-2 or ZIKV challenges in vivo. INTERPRETATION: Yeast-expressed ZIKV-80E, which forms highly immunogenic EDIII-displaying NPs, elicits ZIKV EDIII-specific antibodies capable of offering significant protection in vivo, without the potential risk of ADE upon subsequent DENV-2 or ZIKV infection. This offers a promising vaccine candidate for further development. FUNDING: This study was supported partly by ICGEB, India, and by NIAID, USA.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Dengue/immunology , Immunization, Passive/methods , Nanoparticles , Viral Envelope Proteins/immunology , Zika Virus Infection/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Dengue/prevention & control , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Zika Virus/immunology , Zika Virus Infection/prevention & control
7.
Pathog Dis ; 77(3)2019 04 01.
Article in English | MEDLINE | ID: mdl-31093663

ABSTRACT

Zika virus (ZIKV) is an arbovirus which shares antigenic similarity and the mosquito vector with dengue viruses (DENVs). ZIKV is a neurotropic virus capable of causing congenital neurodevelopmental birth defects. As ZIKV antibodies (Abs) can potentially enhance infection by DENVs, a preventive ZIKV vaccine must be designed to eliminate antibody dependent enhancement of infection. We developed a Zika Subunit Vaccine (ZSV) consisting of two proteins, ZS and S, in a genetically pre-determined ratio of 1:4, using the methylotrophic yeast Pichia pastoris. ZS is an in-frame fusion of ZIKV envelope domain III with the Hepatitis B virus (HBV) surface antigen, and S is the un-fused HBV surface antigen. Using specific monoclonal Abs we showed the presence of ZS and S in the co-purified material which were found to co-assemble into virus-like particles (VLPs), based on dynamic light scattering and electron microscopic analyses. These VLPs were immunogenic in BALB/c mice, eliciting Abs capable of neutralizing ZIKV reporter virus particles. Further, the VLP-induced Abs did not enhance a sub-lethal DENV-2 challenge in AG129 mice. This important safety feature, coupled to the well-documented advantage of P. pastoris expression system, warrants further exploration of ZSV VLP as a possible vaccine candidate.


Subject(s)
Pichia/metabolism , Protein Multimerization , Recombinant Fusion Proteins/metabolism , Vaccines, Virus-Like Particle/immunology , Viral Envelope Proteins/metabolism , Virosomes/metabolism , Zika Virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody-Dependent Enhancement , Dengue Virus/pathogenicity , Female , Male , Mice, Inbred BALB C , Pichia/genetics , Recombinant Fusion Proteins/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/isolation & purification , Vaccines, Subunit/metabolism , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification , Vaccines, Synthetic/metabolism , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/isolation & purification , Vaccines, Virus-Like Particle/metabolism , Viral Envelope Proteins/genetics
8.
Expert Rev Vaccines ; 18(2): 105-117, 2019 02.
Article in English | MEDLINE | ID: mdl-30587054

ABSTRACT

INTRODUCTION: A safe and efficacious vaccine for dengue continues to be an unmet public health need. The recent licensing of a dengue vaccine (Dengvaxia) developed by Sanofi has brought to the fore the safety issue of vaccine-induced infection enhancement. AREAS COVERED: This article focuses on two new yeast-produced tetravalent dengue envelope domain III-displaying virus-like particulate vaccine candidates reported in early 2018 and reviews the rationale underlying their design, and pre-clinical data which suggest that these may offer promising alternate options. EXPERT COMMENTARY: These are the only vaccine candidates so far to have demonstrated the induction of primarily serotype-specific neutralizing antibodies to all dengue virus serotypes in experimental animals. Interestingly, these antibodies lack infection-enhancing potential when evaluated using the AG129 mouse model.


Subject(s)
Dengue Vaccines/administration & dosage , Dengue/prevention & control , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/blood , Dengue Vaccines/immunology , Dengue Virus/immunology , Humans , Mice , Vaccines, Virus-Like Particle/immunology
9.
Sci Rep ; 8(1): 8643, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872153

ABSTRACT

Dengue is a significant public health problem worldwide, caused by four antigenically distinct mosquito-borne dengue virus (DENV) serotypes. Antibodies to any given DENV serotype which can afford protection against that serotype tend to enhance infection by other DENV serotypes, by a phenomenon termed antibody-dependent enhancement (ADE). Antibodies to the viral pre-membrane (prM) protein have been implicated in ADE. We show that co-expression of the envelope protein of all four DENV serotypes, in the yeast Pichia pastoris, leads to their co-assembly, in the absence of prM, into tetravalent mosaic VLPs (T-mVLPs), which retain the serotype-specific antigenic integrity and immunogenicity of all four types of their monomeric precursors. Following a three-dose immunisation schedule, the T-mVLPs elicited EDIII-directed antibodies in mice which could neutralise all four DENV serotypes. Importantly, anti-T-mVLP antibodies did not augment sub-lethal DENV-2 infection of dengue-sensitive AG129 mice, based on multiple parameters. The 'four-in-one' tetravalent T-mVLPs possess multiple desirable features which may potentially contribute to safety (non-viral, prM-lacking and ADE potential-lacking), immunogenicity (induction of virus-neutralising antibodies), and low cost (single tetravalent immunogen produced using P. pastoris, an expression system known for its high productivity using simple inexpensive media). These results strongly warrant further exploration of this vaccine candidate.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/prevention & control , Recombinant Proteins/immunology , Vaccines, Virus-Like Particle/immunology , Viral Envelope Proteins/immunology , Animals , Antibody-Dependent Enhancement , Dengue Virus/genetics , Disease Models, Animal , Gene Expression , Immunization Schedule , Mice , Pichia/genetics , Pichia/metabolism , Protein Multimerization , Recombinant Proteins/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Envelope Proteins/genetics
10.
PLoS Negl Trop Dis ; 12(1): e0006191, 2018 01.
Article in English | MEDLINE | ID: mdl-29309412

ABSTRACT

BACKGROUND: Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. METHODOLOGY/PRINCIPAL FINDINGS: We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. CONCLUSIONS/SIGNIFICANCE: Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent seroconversion. DSV4 has a significant potential to emerge as a safe, efficacious and inexpensive subunit dengue vaccine candidate.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody-Dependent Enhancement , Dengue Virus/immunology , Severe Dengue/prevention & control , Vaccines, Virus-Like Particle/immunology , Viral Envelope Proteins/immunology , Animals , Dengue Virus/genetics , Disease Models, Animal , Macaca , Mice , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serogroup , Severe Dengue/pathology , Survival Analysis , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Envelope Proteins/genetics
11.
Front Microbiol ; 8: 2644, 2017.
Article in English | MEDLINE | ID: mdl-29367852

ABSTRACT

Dengue, a significant public health problem in several countries around the world, is caused by four different serotypes of mosquito-borne dengue viruses (DENV-1, -2, -3, and -4). Antibodies to any one DENV serotype which can protect against homotypic re-infection, do not offer heterotypic cross-protection. In fact, cross-reactive antibodies may augment heterotypic DENV infection through antibody-dependent enhancement (ADE). A recently launched live attenuated vaccine (LAV) for dengue, which consists of a mixture of four chimeric yellow-fever/dengue vaccine viruses, may be linked to the induction of disease-enhancing antibodies. This is likely related to viral interference among the replicating viral strains, resulting in an unbalanced immune response, as well as to the fact that the LAV encodes prM, a DENV protein documented to elicit ADE-mediating antibodies. This makes it imperative to explore the feasibility of alternate ADE risk-free vaccine candidates. Our quest for a non-replicating vaccine centered on the DENV envelope (E) protein which mediates virus entry into the host cell and serves as an important target of the immune response. Serotype-specific neutralizing epitopes and the host receptor recognition function map to E domain III (EDIII). Recently, we found that Pichia pastoris-expressed DENV E protein, of all four serotypes, self-assembled into virus-like particles (VLPs) in the absence of prM. Significantly, these VLPs displayed EDIII and elicited EDIII-focused DENV-neutralizing antibodies in mice. We now report the creation and characterization of a novel non-replicating recombinant particulate vaccine candidate, produced by co-expressing the E proteins of DENV-1 and DENV-2 in P. pastoris. The two E proteins co-assembled into bivalent mosaic VLPs (mVLPs) designated as mE1E2bv VLPs. The mVLP, which preserved the serotype-specific antigenic integrity of its two component proteins, elicited predominantly EDIII-focused homotypic virus-neutralizing antibodies in BALB/c mice, demonstrating its efficacy. In an in vivo ADE model, mE1E2bv VLP-induced antibodies lacked discernible ADE potential, compared to the cross-reactive monoclonal antibody 4G2, as evidenced by significant reduction in the levels of IL-6 and TNF-α, suggesting inherent safety. The results obtained with these bivalent mVLPs suggest the feasibility of incorporating the E proteins of DENV-3 and DENV-4 to create a tetravalent mVLP vaccine.

12.
Am J Trop Med Hyg ; 96(1): 126-134, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27821688

ABSTRACT

Dengue is a viral pandemic caused by four dengue virus serotypes (DENV-1, 2, 3, and 4) transmitted by Aedes mosquitoes. Reportedly, there has been a 2-fold increase in dengue cases every decade. An efficacious tetravalent vaccine, which can provide long-term immunity against all four serotypes in all target populations, is still unavailable. Despite the progress being made in the live virus-based dengue vaccines, the World Health Organization strongly recommends the development of alternative approaches for safe, affordable, and efficacious dengue vaccine candidates. We have explored virus-like particles (VLPs)-based nonreplicating subunit vaccine approach and have developed recombinant envelope ectodomains of DENV-1, 2, and 3 expressed in Pichia pastoris These self-assembled into VLPs without pre-membrane (prM) protein, which limits the generation of enhancing antibodies, and elicited type-specific neutralizing antibodies against the respective serotype. Encouraged by these results, we have extended this work further by developing P. pastoris-expressed DENV-4 ectodomain (DENV-4 E) in this study, which was found to be glycosylated and assembled into spherical VLPs without prM, and displayed critical neutralizing epitopes on its surface. These VLPs were found to be immunogenic in mice and elicited DENV-4-specific neutralizing antibodies, which were predominantly directed against envelope domain III, implicated in host-receptor recognition and virus entry. These observations underscore the potential of VLP-based nonreplicative vaccine approach as a means to develop a safe, efficacious, and tetravalent dengue subunit vaccine. This work paves the way for the evaluation of a DENV E-based tetravalent dengue vaccine candidate, as an alternative to live virus-based dengue vaccines.


Subject(s)
Antibodies, Viral/immunology , Dengue Vaccines/immunology , Dengue Virus/classification , Pichia/metabolism , Viral Envelope Proteins/metabolism , Animals , Cell Line , Cloning, Molecular , Mice , Mice, Inbred BALB C , Viral Envelope Proteins/immunology
13.
BMC Biotechnol ; 16(1): 50, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27301568

ABSTRACT

BACKGROUND: Four antigenically distinct serotypes (1-4) of dengue viruses (DENVs) cause dengue disease. Antibodies to any one DENV serotype have the potential to predispose an individual to more severe disease upon infection with a different DENV serotype. A dengue vaccine must elicit homotypic neutralizing antibodies to all four DENV serotypes to avoid the risk of such antibody-dependent enhancement in the vaccine recipient. This is a formidable challenge as evident from the lack of protective efficacy against DENV-2 by a tetravalent live attenuated dengue vaccine that has completed phase III trials recently. These trial data underscore the need to explore non-replicating subunit vaccine alternatives. Recently, using the methylotrophic yeast Pichia pastoris, we showed that DENV-2 and DENV-3 envelope (E) glycoproteins, expressed in absence of prM, implicated in causing severe dengue disease, self-assemble into virus-like particles (VLPs), which elicit predominantly virus-neutralizing antibodies and confer significant protection against lethal DENV challenge in an animal model. The current study extends this work to a third DENV serotype. RESULTS: We cloned and expressed DENV-1 E antigen in P. pastoris, and purified it to near homogeneity. Recombinant DENV-1 E underwent post-translational processing, namely, signal peptide cleavage and glycosylation. Purified DENV-1 E self-assembled into stable VLPs, based on electron microscopy and dynamic light scattering analysis. Epitope mapping with monoclonal antibodies revealed that the VLPs retained the overall antigenic integrity of the virion particles despite the absence of prM. Subtle changes accompanied the efficient display of E domain III (EDIII), which contains type-specific neutralizing epitopes. These VLPs were immunogenic, eliciting predominantly homotypic EDIII-directed DENV-1-specific neutralizing antibodies. CONCLUSIONS: This work demonstrates the inherent potential of P. pastoris-expressed DENV-1 E glycoprotein to self-assemble into VLPs eliciting predominantly homotypic neutralizing antibodies. This work justifies an investigation of the last remaining serotype, namely, DENV-4, to assess if it also shares the desirable vaccine potential manifested by the remaining three DENV serotypes. Such efforts could make it possible to envisage the development of a tetravalent dengue vaccine based on VLPs of P. pastoris-expressed E glycoproteins of the four DENV serotypes.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Pichia/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Mice , Pichia/genetics
14.
BMC Biotechnol ; 16: 12, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26847361

ABSTRACT

BACKGROUND: Dengue is a viral disease spread to humans by mosquitoes. Notably, there are four serotypes of dengue viruses (DENV) that places ~40 % of the global population at risk of infection. However, lack of a suitable drug or a preventive vaccine exacerbates the matter further. Envelope domain-III (EDIII) antigen of dengue virus (DENV) has garnered much attention as a promising vaccine candidate for dengue, in addition to its use as a diagnostic intermediate. Hence developing a method for efficient production of high quality recombinant EDIII is important for research and industrial purpose. RESULTS: In this work, a Pichia pastoris system was optimized for the secretory over-expression of DENV serotype-3 EDIII under the control of methanol inducible AOX1 promoter. Temperature alone had a significant impact upon the amount of secretory EDIII, with 2.5-fold increase upon reducing the induction temperature from 30 to 20 °C. However surprisingly, supplementation of culture media with Casamino acids (CA), further augmented secretory EDIII titer, with a concomitant drop of intracellular EDIII levels at both temperatures. Though, reduction in intracellular retention of EDIII was more prominent at 20 °C than 30 °C. This suggests that CA supplementation facilitates overexpressing P. pastoris cells to secrete more EDIII by reducing the proportion retained intracellularly. Moreover, a bell-shaped correlation was observed between CA concentration and secretory EDIII titer. The maximum EDIII expression level of 187 mg/L was achieved under shake flask conditions with induction at 20 °C in the presence of 1 % CA. The overall increase in EDIII titer was ~9-fold compared to un-optimized conditions. Notably, mouse immune-sera, generated using this purified EDIII antigen, efficiently neutralized the DENV. CONCLUSIONS: The strategy described herein could enable fulfilling the mounting demand for recombinant EDIII as well as lay direction to future studies on secretory expression of recombinant proteins in P. pastoris with CA as a media supplement.


Subject(s)
Amino Acids/metabolism , Dengue Virus/genetics , Pichia/genetics , Recombinant Proteins/metabolism , Viral Envelope Proteins/metabolism , Amino Acids/chemistry , Animals , Culture Media/chemistry , Culture Media/metabolism , Mice , Mice, Inbred BALB C , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
15.
Front Microbiol ; 6: 1005, 2015.
Article in English | MEDLINE | ID: mdl-26441930

ABSTRACT

Dengue poses a serious public health risk to nearly half the global population. It causes ~400 million infections annually and is considered to be one of the fastest spreading vector-borne diseases. Four distinct serotypes of dengue viruses (DENV-1, -2, -3, and -4) cause dengue disease, which may be either mild or extremely severe. Antibody-dependent enhancement (ADE), by pre-existing cross-reactive antibodies, is considered to be the major mechanism underlying severe disease. This mandates that a preventive vaccine must confer simultaneous and durable immunity to each of the four prevalent DENV serotypes. Recently, we used Pichia pastoris, to express recombinant DENV-2 E ectodomain, and found that it assembled into virus-like particles (VLPs), in the absence of prM, implicated in the elicitation of ADE-mediating antibodies. These VLPs elicited predominantly type-specific neutralizing antibodies that conferred significant protection against lethal DENV-2 challenge, in a mouse model. The current work is an extension of this approach to develop prM-lacking DENV-3 E VLPs. Our data reveal that P. pastoris-produced DENV-3 E VLPs not only preserve the antigenic integrity of the major neutralizing epitopes, but also elicit potent DENV-3 virus-neutralizing antibodies. Further, these neutralizing antibodies appear to be exclusively directed toward domain III of the DENV-3 E VLPs. Significantly, they also lack discernible ADE potential toward heterotypic DENVs. Taken together with the high productivity of the P. pastoris expression system, this approach could potentially pave the way toward developing a DENV E-based, inexpensive, safe, and efficacious tetravalent sub-unit vaccine, for use in resource-poor dengue endemic countries.

16.
J Nanobiotechnology ; 11: 15, 2013 May 25.
Article in English | MEDLINE | ID: mdl-23706089

ABSTRACT

BACKGROUND: Dengue is today the most significant of arboviral diseases. Novel tools are necessary to effectively address the problem of dengue. Virus-like particles (VLP) offer a versatile nanoscale platform for developing tools with potential biomedical applications. From the perspective of a potentially useful dengue-specific tool, the dengue virus envelope protein domain III (EDIII), endowed with serotype-specificity, host receptor recognition and the capacity to elicit virus-neutralizing antibodies, is an attractive candidate. METHODS: We have developed a strategy to co-express and co-purify Hepatitis B virus surface (S) antigen in two forms: independently and as a fusion with EDIII. We characterized these physically and functionally. RESULTS: The two forms of the S antigen associate into VLPs. The ability of these to display EDIII in a functionally accessible manner is dependent upon the relative levels of the two forms of the S antigen. Mosaic VLPs containing the fused and un-fused components in 1:4 ratio displayed maximal functional competence. CONCLUSIONS: VLPs armed with EDIII may be potentially useful in diagnostic, therapeutic and prophylactic applications.


Subject(s)
Dengue Virus/physiology , Dengue/diagnosis , Dengue/virology , Nanoparticles/chemistry , Animals , Antigens, Viral/isolation & purification , Antigens, Viral/ultrastructure , Cell Extracts , Chlorocebus aethiops , Pichia/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/isolation & purification , Species Specificity , Vero Cells , Viral Envelope Proteins , Viral Proteins/chemistry , Viral Proteins/isolation & purification , Virion/metabolism
17.
PLoS One ; 8(5): e64595, 2013.
Article in English | MEDLINE | ID: mdl-23717637

ABSTRACT

Dengue is a mosquito-borne viral disease with a global prevalence. It is caused by four closely-related dengue viruses (DENVs 1-4). A dengue vaccine that can protect against all four viruses is an unmet public health need. Live attenuated vaccine development efforts have encountered unexpected interactions between the vaccine viruses, raising safety concerns. This has emphasized the need to explore non-replicating dengue vaccine options. Virus-like particles (VLPs) which can elicit robust immunity in the absence of infection offer potential promise for the development of non-replicating dengue vaccine alternatives. We have used the methylotrophic yeast Pichia pastoris to develop DENV envelope (E) protein-based VLPs. We designed a synthetic codon-optimized gene, encoding the N-terminal 395 amino acid residues of the DENV-2 E protein. It also included 5' pre-membrane-derived signal peptide-encoding sequences to ensure proper translational processing, and 3' 6× His tag-encoding sequences to facilitate purification of the expressed protein. This gene was integrated into the genome of P. pastoris host and expressed under the alcohol oxidase 1 promoter by methanol induction. Recombinant DENV-2 protein, which was present in the insoluble membrane fraction, was extracted and purified using Ni(2+)-affinity chromatography under denaturing conditions. Amino terminal sequencing and detection of glycosylation indicated that DENV-2 E had undergone proper post-translational processing. Electron microscopy revealed the presence of discrete VLPs in the purified protein preparation after dialysis. The E protein present in these VLPs was recognized by two different conformation-sensitive monoclonal antibodies. Low doses of DENV-2 E VLPs formulated in alum were immunogenic in inbred and outbred mice eliciting virus neutralizing titers >1,1200 in flow cytometry based assays and protected AG129 mice against lethal challenge (p<0.05). The formation of immunogenic DENV-2 E VLPs in the absence of pre-membrane protein highlights the potential of P. pastoris in developing non-replicating, safe, efficacious and affordable dengue vaccine.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Dengue Virus/immunology , Viral Envelope Proteins/immunology , Virion/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cell Line , Dengue/prevention & control , Dengue/virology , Humans , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Molecular Sequence Data , Pichia , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Vaccination , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/chemistry , Viral Vaccines/immunology , Virion/ultrastructure
18.
Vaccine ; 31(6): 873-8, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23261049

ABSTRACT

OBJECTIVE: Currently, dengue represents one of the most significant arboviral disease worldwide, for which a vaccine is not yet available. Persistent challenges in live viral dengue vaccines have sparked a keen interest in exploring non-replicating dengue vaccines. We have examined the feasibility of using the methylotrophic yeast Pichia pastoris to develop a chimeric vaccine candidate displaying the dengue virus type-2 (DENV-2) envelope domain III (EDIII), implicated in host receptor binding and in the induction of virus-neutralizing antibodies, on the surface of non-infectious virus-like particles (VLP)-based on the Hepatitis B virus core antigen (HBcAg). METHODS: We designed a fusion antigen by inserting DENV-2 EDIII into c/e1 loop of HBcAg. A codon-optimized gene encoding this fusion antigen was integrated into the genome of P. pastoris, under the control of the Alcohol Oxidase 1 promoter. The antigen was expressed by methanol induction and purified to near homogeneity by Ni(2+) affinity chromatography. The purified antigen was characterized physically and functionally to evaluate its ability to assemble into VLPs, and elicit DENV-2-specific antibodies in mice. RESULTS: This fusion antigen was expressed successfully to high yields and purified to near homogeneity. Electron microscopy and competitive ELISA analyses showed that it formed VLPs in which the EDIII moiety was accessible to different EDIII-specific antibodies. These VLPs were immunogenic in mice, stimulating the production of antibodies that could specifically recognize DENV-2 and neutralize its infectivity. However, virus-neutralizing antibody titers were modest. CONCLUSIONS: Our data show: (i) insertion of EDIII into the c/e1 loop of HBcAg does not compromise particle assembly; and (ii) the chimeric VLPs elicit a specific humoral response against DENV-2. The strategy of displaying dengue virus EDIII using a VLP platform will need further optimization before it may be developed into a viable alternative option.


Subject(s)
Antibodies, Viral/blood , Dengue Vaccines/immunology , Dengue Virus/immunology , Vaccines, Virus-Like Particle/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Dengue Virus/genetics , Drug Carriers/administration & dosage , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Mice , Mice, Inbred BALB C , Microscopy, Electron , Molecular Sequence Data , Pichia , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Sequence Analysis, DNA , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Envelope Proteins/genetics
19.
J Nanobiotechnology ; 10: 30, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22794664

ABSTRACT

BACKGROUND: Dengue is a global public health problem for which no drug or vaccine is available. Currently, there is increasing interest in developing non-replicating dengue vaccines based on a discrete antigenic domain of the major structural protein of dengue viruses (DENVs), known as envelope domain III (EDIII). The use of bio-nanoparticles consisting of recombinant viral structural polypeptides, better known as virus-like particles (VLPs), has emerged as a potential platform technology for vaccine development. This work explores the feasibility of developing nanoparticles based on E. coli-expressed recombinant Hepatitis B virus core antigen (HBcAg) designed to display EDIII moiety of DENV on the surface. FINDINGS: We designed a synthetic gene construct encoding HBcAg containing an EDIII insert in its c/e1 loop. The fusion antigen HBcAg-EDIII-2 was expressed in E. coli, purified to near homogeneity using Ni+2 affinity chromatography and demonstrated to assemble into discrete 35-40 nm VLPs by electron microscopy. Competitive ELISA analyses showed that the EDIII-2 moieties of the VLPs are accessible to anti-EDIII-2-specific monoclonal and polyclonal antibodies, suggesting that they are surface-displayed. The VLPs were highly immunogenic eliciting high titer anti-EDIII-2 antibodies that were able to recognize, bind and neutralize infectious DENV based on ELISA, immunofluorescence and virus-neutralization assays. CONCLUSION: This work demonstrates that HBcAg-derived nanoparticles can serve as a useful platform for the display of DENV EDIII. The EDIII-displaying nanoparticles may have potential applications in diagnostics/vaccines for dengue.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Hepatitis B Core Antigens/immunology , Vaccines, Virus-Like Particle/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/immunology , Dengue/immunology , Dengue Vaccines/genetics , Dengue Vaccines/isolation & purification , Dengue Virus/genetics , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Gene Expression , Hepatitis B Core Antigens/genetics , Hepatitis B Core Antigens/isolation & purification , Humans , Mice , Mice, Inbred BALB C , Vaccination , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/isolation & purification , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...