Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 15(1): 65, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443999

ABSTRACT

BACKGROUND: The multimodal properties of mesenchymal stromal cells (MSCs), particularly their ability to modulate immune responses is of high interest in translational research. Pro-inflammatory, hypoxic, and 3D culture priming are promising and often used strategies to improve the immunosuppressive potency of MSCs, but the underlying mechanisms are not well understood. Therefore, the aims of this study were (i) to compare the effects of pro-inflammatory, hypoxic, and 3D culture priming on the in vitro immunosuppressive potential of MSCs, (ii) to assess if immunosuppressive priming effects are temporally preserved under standard and translationally relevant culture conditions, and (iii) to investigate if the three priming strategies engage the same immunosuppressive mechanisms. METHODS: Functional in vitro T cell suppressive potency measurements were conducted to assess the impact of pro-inflammatory, hypoxic, and 3D culture priming on the immunosuppressive potential of human bone marrow-derived MSCs. Primed MSCs were either cultured under standard cell culture conditions or translationally relevant culture conditions, and their transcriptomic adaptations were monitored over time. Next-generation sequencing was performed to assess if different priming strategies activate distinct immunosuppressive mechanisms. RESULTS: (i) Pro-inflammatory, hypoxic, and 3D culture priming induced profound transcriptomic changes in MSCs resulting in a significantly enhanced T cell suppressive potential of pro-inflammatory and 3D culture primed MSCs. (ii) Priming effects rapidly faded under standard cell culture conditions but were partially preserved under translationally relevant conditions. Interestingly, continuous 3D culture priming of MSCs maintained the immunosuppressive potency of MSCs. (iii) Next-generation sequencing revealed that priming strategy-specific differentially expressed genes are involved in the T cell suppressive capacity of MSCs, indicating that different priming strategies engage distinct immunosuppressive mechanisms. CONCLUSION: Priming can be a useful approach to improve the immunosuppressive potency of MSCs. However, future studies involving primed MSCs should carefully consider the significant impact of translationally relevant conditions on the preservation of priming effects. Continuous 3D culture could act as a functionalized formulation, supporting the administration of MSC spheroids for a sustainably improved immunosuppressive potency.


Subject(s)
Mesenchymal Stem Cells , Humans , Cell Culture Techniques , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Hypoxia , Immunosuppressive Agents
2.
Sci Immunol ; 9(91): eadj5948, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215192

ABSTRACT

Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.


Subject(s)
Hypergammaglobulinemia , Lymphoproliferative Disorders , Humans , Apoptosis/genetics , Germinal Center , Lymphoproliferative Disorders/genetics , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...