Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1331269, 2024.
Article in English | MEDLINE | ID: mdl-38576790

ABSTRACT

MADS-domain transcription factors play pivotal roles in numerous developmental processes in Arabidopsis thaliana. While their involvement in flowering transition and floral development has been extensively examined, their functions in root development remain relatively unexplored. Here, we explored the function and genetic interaction of three MADS-box genes (XAL2, SOC1 and AGL24) in primary root development. By analyzing loss-of-function and overexpression lines, we found that SOC1 and AGL24, both critical components in flowering transition, redundantly act as repressors of primary root growth as the loss of function of either SOC1 or AGL24 partially recovers the primary root growth, meristem cell number, cell production rate, and the length of fully elongated cells of the short-root mutant xal2-2. Furthermore, we observed that the simultaneous overexpression of AGL24 and SOC1 leads to short-root phenotypes, affecting meristem cell number and fully elongated cell size, whereas SOC1 overexpression is sufficient to affect columella stem cell differentiation. Additionally, qPCR analyses revealed that these genes exhibit distinct modes of transcriptional regulation in roots compared to what has been previously reported for aerial tissues. We identified 100 differentially expressed genes in xal2-2 roots by RNA-seq. Moreover, our findings revealed that the expression of certain genes involved in cell differentiation, as well as stress responses, which are either upregulated or downregulated in the xal2-2 mutant, reverted to WT levels in the absence of SOC1 or AGL24.

2.
Viruses ; 14(4)2022 03 26.
Article in English | MEDLINE | ID: mdl-35458418

ABSTRACT

Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) is a virulent pathogen of lepidopterans in the genera Heliothis and Helicoverpa, whereas Helicoverpa armigera multiple nucleopolyhedrovirus (HearSNPV) is a different virus species with a broader host range. This study aimed to examine the consequences of coocclusion of HearSNPV and HearMNPV on the pathogenicity, stability and host range of mixed-virus occlusion bodies (OBs). HearSNPV OBs were approximately 6-fold more pathogenic than HearMNPV OBs, showed faster killing by approximately 13 h, and were approximately 45% more productive in terms of OB production per larva. For coocclusion, H. armigera larvae were first inoculated with HearMNPV OBs and subsequently inoculated with HearSNPV OBs at intervals of 0-72 h after the initial inoculation. When the interval between inoculations was 12-24 h, OBs collected from virus-killed insects were found to comprise 41-57% of HearSNPV genomes, but the prevalence of HearSNPV genomes was greatly reduced (3-4%) at later time points. Quantitative PCR (qPCR) analysis revealed the presence of HearSNPV genomes in a small fraction of multinucleocapsid ODVs representing 0.47-0.88% of the genomes quantified in ODV samples, indicating that both viruses had replicated in coinfected host cells. End-point dilution assays on ODVs from cooccluded mixed-virus OBs confirmed the presence of both viruses in 41.9-55.6% of wells that were predicted to have been infected by a single ODV. A control experiment indicated that this result was unlikely to be due to the adhesion of HearSNPV ODVs to HearMNPV ODVs or accidental contamination during ODV band extraction. Therefore, the disparity between the qPCR and end-point dilution estimates of the prevalence of mixed-virus ODVs likely reflected virus-specific differences in replication efficiency in cell culture and the higher infectivity of pseudotyped ODVs that were produced in coinfected parental cells. Bioassays on H. armigera, Spodoptera frugiperda and Mamestra brassicae larvae revealed that mixed-virus OBs were capable of infecting heterologous hosts, but relative potency values largely reflected the proportion of HearMNPV present in each mixed-virus preparation. The cooccluded mixtures were unstable in serial passage; HearSNPV rapidly dominated during passage in H. armigera whereas HearMNPV rapidly dominated during passage in the heterologous hosts. We conclude that mixed-virus coocclusion technology may be useful for producing precise mixtures of viruses with host range properties suitable for the control of complexes of lepidopteran pests in particular crops, although this requires validation by field testing.


Subject(s)
Moths , Nucleopolyhedroviruses , Animals , Larva , Virulence
3.
Front Plant Sci ; 10: 853, 2019.
Article in English | MEDLINE | ID: mdl-31354752

ABSTRACT

Plants, as sessile organisms, adapt to different stressful conditions, such as drought, salinity, extreme temperatures, and nutrient deficiency, via plastic developmental and growth responses. Depending on the intensity and the developmental phase in which it is imposed, a stress condition may lead to a broad range of responses at the morphological, physiological, biochemical, and molecular levels. Transcription factors are key components of regulatory networks that integrate environmental cues and concert responses at the cellular level, including those that imply a stressful condition. Despite the fact that several studies have started to identify various members of the MADS-box gene family as important molecular components involved in different types of stress responses, we still lack an integrated view of their role in these processes. In this review, we analyze the function and regulation of MADS-box gene family members in response to drought, salt, cold, heat, and oxidative stress conditions in different developmental processes of several plants. In addition, we suggest that MADS-box genes are key components of gene regulatory networks involved in plant responses to stress and plant developmental plasticity in response to seasonal changes in environmental conditions.

4.
PLoS One ; 11(10): e0164486, 2016.
Article in English | MEDLINE | ID: mdl-27732657

ABSTRACT

A co-occluded binary mixture of Helicoverpa armigera nucleopolyhedrovirus genotypes HearSP1B and HearLB6 at a 1:1 ratio (HearSP1B+HearLB6) was selected for the development of a virus-based biological insecticide, which requires an efficient large-scale production system. In vivo production systems require optimization studies in each host-virus pathosystem. In the present study, the effects of larval instar, rearing density, timing of inoculation, inoculum concentration and temperature on the production of HearSP1B+HearLB6 in its homologous host were evaluated. The high prevalence of cannibalism in infected larvae (40-87%) indicated that insects require individual rearing to avoid major losses in OB production. The OB production of recently molted fifth instars (7.0 x 109 OBs/larva), combined with a high prevalence of mortality (85.7%), resulted in the highest overall OB yield (6.0 x 1011 OBs/100 inoculated larvae), compared to those of third or fourth instars. However, as inoculum concentration did not influence final OB yield, the lowest concentration, LC80 (5.5 x 106 OBs/ml), was selected. Incubation temperature did not significantly influence OB yield, although larvae maintained at 30°C died 13 and 34 hours earlier than those incubated at 26°C and 23°C, respectively. We conclude that the efficient production of HearSP1B+HearLB6 OBs involves inoculation of recently molted fifth instars with a LC80 concentration of OBs followed by individual rearing at 30°C.


Subject(s)
Larva/virology , Lepidoptera/virology , Nucleopolyhedroviruses/genetics , Animals , Biotechnology/methods , Cannibalism , Genotype , Larva/growth & development , Lepidoptera/growth & development , Pest Control, Biological/methods
5.
Pest Manag Sci ; 72(4): 660-70, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25960129

ABSTRACT

BACKGROUND: A binary co-occluded mixture (HearSP1B:LB6) of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) variants was previously found to be highly pathogenic under laboratory conditions. The insecticidal efficacy and persistence of this mixture were determined in greenhouse and field-grown tomato crops in Spain and Portugal. RESULTS: Concentrations of 10(9) -10(11) occlusion bodies (OBs) L(-1) of HearSP1B:LB6 resulted in 89-100% mortality of larvae on treated tomato plants in growth chambers. In protected tomato crops, application of 10(10) OBs L(-1) of HearSP1B:LB6 was as effective as Bacillus thuringiensis (Bt) and spinosad in reducing the percentage of damaged fruits, and resulted in higher larval mortality than the Bt treatment. In open-field tomato crops, virus treatments were as effective in reducing the percentage of damaged fruit as spinosad, Bt and chlorpyrifos treatments. The persistence of the insecticides on tomato plants was negatively correlated with solar radiation in both field and greenhouse settings. Residual insecticidal activity of OBs on protected tomato crops at 6 days post-application was 55 and 35% higher than that of Bt and spinosad respectively. On field-grown tomato, OB persistence was significantly lower than with spinosad or chlorpyrifos. CONCLUSION: The efficacy and persistence of HearSP1B:LB6 OBs were comparable with those of commercial insecticides in both field and greenhouse tomato crops. Future studies should focus on reducing application rates to determine insecticidal efficacy at lower OB concentrations. © 2015 Society of Chemical Industry.


Subject(s)
Genetic Variation , Lepidoptera/virology , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/physiology , Solanum lycopersicum/growth & development , Animals , Environment, Controlled , Europe , Laboratories , Larva/virology
6.
Genome Announc ; 3(3)2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067949

ABSTRACT

Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has proved effective as the basis for various biological insecticides. Complete genome sequences of five Spanish HearNPV genotypes differed principally in the homologous regions (hrs) and the baculovirus repeat open reading frame (bro) genes, suggesting that they may be involved in the phenotypic differences observed among genotypes.

7.
Appl Environ Microbiol ; 81(12): 3984-93, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25841011

ABSTRACT

The genotypic diversity of two Spanish isolates of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) was evaluated with the aim of identifying mixtures of genotypes with improved insecticidal characteristics for control of the cotton bollworm. Two genotypic variants, HearSP1A and HearSP1B, were cloned in vitro from the most pathogenic wild-type isolate of the Iberian Peninsula, HearSNPV-SP1 (HearSP1-wt). Similarly, six genotypic variants (HearLB1 to -6) were obtained by endpoint dilution from larvae collected from cotton crops in southern Spain that died from virus disease during laboratory rearing. Variants differed significantly in their insecticidal properties, pathogenicity, speed of kill, and occlusion body (OB) production (OBs/larva). HearSP1B was ∼3-fold more pathogenic than HearSP1-wt and the other variants. HearLB1, HearLB2, HeaLB5, and HearLB6 were the fastest-killing variants. Moreover, although highly virulent, HearLB1, HearLB4, and HearLB5 produced more OBs/larva than did the other variants. The co-occluded HearSP1B:LB6 mixture at a 1:1 proportion was 1.7- to 2.8-fold more pathogenic than any single variant and other mixtures tested and also killed larvae as fast as the most virulent genotypes. Serial passage resulted in modified proportions of the component variants of the HearSP1B:LB6 co-occluded mixture, suggesting that transmissibility could be further improved by this process. We conclude that the improved insecticidal phenotype of the HearSP1B:LB6 co-occluded mixture underlines the utility of the genotypic variant dissection and reassociation approach for the development of effective virus-based insecticides.


Subject(s)
Insecticides , Larva/virology , Moths/virology , Nucleopolyhedroviruses , Pest Control, Biological , Animals , Cloning, Molecular , Genotype , Gossypium , Molecular Sequence Data , Moths/physiology , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/pathogenicity , Nucleopolyhedroviruses/physiology , Pest Control, Biological/methods , Spain
8.
Pest Manag Sci ; 70(6): 967-76, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23983128

ABSTRACT

BACKGROUND: The cotton bollworm, Helicoverpa armigera, is an insect that causes damage in a wide range of crops in Spain. Seven isolates of H. armigera single nucleopolyhedrovirus (HearSNPV) from the Iberian Peninsula were subjected to molecular and biological characterization and compared with a Chinese genotype (HearSNPV-G4). RESULTS: The estimated sizes of the Iberian genomes varied between 116.2 and 132.4 kb, compared to 131.4 kb of the HearSNPV-G4 reference genome. Phylogenetic analysis based on the lef-8, lef-9 and polh genes revealed that the Iberian strains were more closely related to one another than to other HearSNPV isolates. Occlusion body (OB) concentration-mortality responses (LC50 values) did not differ significantly among Iberian isolates when tested against a Helicoverpa armigera colony from Oxford (UK). Despite being the fastest killing isolate, HearSNPV-SP1 was as productive as isolates with lower virulence, with an average yield of 3.1 × 10(9) OBs larva(-1) . OBs of HearSNPV-SP1 and HearSNPV-G4 were similarly pathogenic against a recently established colony from southern Spain, although HearSNPV-SP1 was faster killing than HearSNPV-G4 against a range of instars. CONCLUSION: The insecticidal properties of HearSNPV-SP1 mean that this strain is likely to prove useful as the basis for a biological insecticide for control of Helicoverpa armigera in Spain.


Subject(s)
Biological Control Agents , Moths/virology , Nucleopolyhedroviruses/genetics , Animals , Genome , Insect Control/methods , Nucleopolyhedroviruses/isolation & purification , Nucleopolyhedroviruses/pathogenicity , Phylogeny , Portugal , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...