Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sci Rep ; 14(1): 4176, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378796

ABSTRACT

Huntington's disease (HD) is caused by an aberrant expansion of CAG repeats in the HTT gene that mainly affects basal ganglia. Although striatal dysfunction has been widely studied in HD mouse models, other brain areas can also be relevant to the pathology. In this sense, we have special interest on the retina as this is the most exposed part of the central nervous system that enable health monitoring of patients using noninvasive techniques. To establish the retina as an appropriate tissue for HD studies, we need to correlate the retinal alterations with those in the inner brain, i.e., striatum. We confirmed the malfunction of the transgenic R6/1 retinas, which underwent a rearrangement of their transcriptome as extensive as in the striatum. Although tissue-enriched genes were downregulated in both areas, a neuroinflammation signature was only clearly induced in the R6/1 retina in which the observed glial activation was reminiscent of the situation in HD patient's brains. The retinal neuroinflammation was confirmed in the slow progressive knock-in zQ175 strain. Overall, these results demonstrated the suitability of the mouse retina as a research model for HD and its associated glial activation.


Subject(s)
Huntington Disease , Mice , Animals , Humans , Huntington Disease/pathology , Mice, Transgenic , Gliosis/genetics , Gliosis/pathology , Microglia/metabolism , Neuroinflammatory Diseases , Disease Models, Animal , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
2.
J Neuroinflammation ; 20(1): 198, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658434

ABSTRACT

BACKGROUND: Most current disease-modifying therapies approved for multiple sclerosis (MS) are immunomodulatory drugs that counteract the aberrant activity of the immune system. Hence, new pharmacological interventions that drive anti-inflammatory activity and neuroprotection would represent interesting alternative therapeutic approaches or complementary strategies to treat progressive forms of MS. There is evidence of reduced noradrenaline levels and alterations to locus coeruleus (LC) noradrenergic neurons in MS patients, as well as in animal models of this disease, potentially factors contributing to the pathophysiology. Drugs that enhance noradrenaline appear to have some beneficial effects in MS, suggesting their potential to dampen the underlying pathology and disease progression. METHODS: Therefore, we explored the consequences of chronic LC noradrenergic neurons activation by chemogenetics in experimental autoimmune encephalomyelitis (EAE) mice, the most widely used experimental model of MS. LC activation from the onset or the peak of motor symptoms was explored as two different therapeutic approaches, assessing the motor and non-motor behavioral changes as EAE progresses, and studying demyelination, inflammation and glial activation in the spinal cord and cerebral cortex during the chronic phase of EAE. RESULTS: LC activation from the onset of motor symptoms markedly alleviated the motor deficits in EAE mice, as well as their anxiety-like behavior and sickness, in conjunction with reduced demyelination and perivascular infiltration in the spinal cord and glial activation in the spinal cord and prefrontal cortex (PFC). When animals exhibited severe paralysis, LC activation produced a modest alleviation of EAE motor symptoms and it enhanced animal well-being, in association with an improvement of the EAE pathology at the spinal cord and PFC level. Interestingly, the reduced dopamine beta-hydroxylase expression associated with EAE in the spinal cord and PFC was reversed through chemogenetic LC activation. CONCLUSION: Therefore, clear anti-inflammatory and neuroprotective effects were produced by the selective activation of LC noradrenergic neurons in EAE mice, having greater benefits when LC activation commenced earlier. Overall, these data suggest noradrenergic LC neurons may be targets to potentially alleviate some of the motor and non-motor symptoms in MS.


Subject(s)
Adrenergic Neurons , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Locus Coeruleus , Norepinephrine
3.
Eur J Med Chem ; 255: 115390, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37137247

ABSTRACT

The unique electronic properties of the fluorine atom make its strategic incorporation into a bioactive compound a very useful tool in the design of drugs with optimized pharmacological properties. In the field of the carbohydrates, its selective installation at C2 position has proven particularly interesting, some 2-deoxy-2-fluorosugar derivatives being currently in the market. We have now transferred this feature into immunoregulatory glycolipid mimetics that contain a sp2-iminosugar moiety, namely sp2-iminoglycolipids (sp2-IGLs). The synthesis of two epimeric series of 2-deoxy-2-fluoro-sp2-IGLs, structurally related to nojirimycin and mannonojirimycin, has been accomplished by sequential Selectfluor-mediated fluorination and thioglycosidation of sp2-iminoglycals. Exclusively the α-anomer is obtained regardless of the configurational profile of the sp2-IGL (d-gluco or d-manno), highlighting the overwhelming anomeric effect in these prototypes. Notably, the combination of a fluorine atom at C2 and an α-oriented sulfonyl dodecyl lipid moiety in compound 11 led to remarkable anti-proliferative properties, featuring similar GI50 values than the chemotherapy drug Cisplatin against several tumor cell lines and better selectivity. The biochemical data further evidence a strong reduction of the number of tumor cell colonies and apoptosis induction. Mechanistic investigations revealed that this fluoro-sp2-IGL induces the non-canonical activation mode of the mitogen-activated protein kinase signaling pathway, causing p38α autoactivation under an inflammatory context.


Subject(s)
Carbohydrates , Fluorine , Fluorine/chemistry , Carbohydrates/chemistry , Glycolipids/chemistry , Cell Line, Tumor
4.
Mar Drugs ; 21(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37103391

ABSTRACT

This study aimed to evaluate the anti-inflammatory potential of the different classes of diterpenoids produced by algae of the genus Rugulopteryx. First, sixteen diterpenoids (1-16), including spatane, secospatane, prenylcubebane, and prenylkelsoane metabolites, were isolated from the extract of the alga Rugulopteryx okamurae collected at the southwestern Spanish coasts. Eight of the isolated diterpenoids are new compounds whose structures were determined by spectroscopic means: the spatanes okaspatols A-D (1-4); the secospatane rugukamural D (8); the prenylcubebanes okacubols A (13) and B (14); and okamurol A (16), which exhibits an unusual diterpenoid skeleton featuring a kelsoane-type tricyclic nucleus. Second, anti-inflammatory assays were performed on microglial cells Bv.2 and macrophage cells RAW 264.7. Compounds 1, 3, 6, 12, and 16 caused significant inhibition of the NO overproduction induced by LPS in Bv.2 cells, and compounds 3, 5, 12, 14, and 16 significantly decreased levels of NO in LPS-stimulated RAW 264.7 cells. The most active compound was okaspatol C (3), which completely suppressed the effects of LPS stimulation, both in Bv.2 and in RAW 264.7 cells.


Subject(s)
Diterpenes , Nitric Oxide , Animals , Mice , Nitric Oxide/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Diterpenes/chemistry , Macrophages/metabolism , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells
5.
Biochem Pharmacol ; 206: 115305, 2022 12.
Article in English | MEDLINE | ID: mdl-36272599

ABSTRACT

The incidence of obesity and its related disorders has increased dramatically in recent years and has become a pandemic. Adipose tissue is a crucial regulator of these diseases due to its endocrine capacity. Thus, understanding adipose tissue metabolism is essential to finding new effective therapeutic approaches. The "omic" revolution has identified new concepts about the complexity of the signaling pathways involved in the pathophysiology of adipose tissue-associated disorders. Specifically, advances in transcriptomics have allowed its application in clinical practice and primary or secondary prevention. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of adipose tissue since they can modulate gene expression at the epigenetic, transcriptional, and post-transcriptional levels. They interact with DNA, RNA, protein complexes, other non-coding RNAs, and microRNAs to regulate a wide range of physiological and pathological processes. Here, we review the emerging field of lncRNAs, including how they regulate adipose tissue biology, and discuss circulating lncRNAs, which may represent a turning point in the diagnosis and treatment of adipose tissue-associated disorders. We also highlight potential biomarkers of obesity and diabetes that could be considered as therapeutic targets.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Adipose Tissue/metabolism , MicroRNAs/metabolism , Transcriptome , Obesity/genetics , Obesity/metabolism
6.
J Clin Med ; 11(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142952

ABSTRACT

Diabetes mellitus (DM) is a world health problem of global repercussion [...].

7.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955585

ABSTRACT

Inflammatory processes play a central role in the pathogenesis of diabetic nephropathy (DN) in the early stages of the disease. The authors demonstrate that the glycolipid mimetic (Ss)-DS-ONJ is able to abolish inflammation via the induction of autophagy flux and provokes the inhibition of inflammasome complex in ex vivo and in vitro models, using adult kidney explants from BB rats. The contribution of (Ss)-DS-ONJ to reducing inflammatory events is mediated by the inhibition of classical stress kinase pathways and the blocking of inflammasome complex activation. The (Ss)-DS-ONJ treatment is able to inhibit the epithelial-to-mesenchymal transition (EMT) progression, but only when the IL18 levels are reduced by the treatment. These findings suggest that (Ss)-DS-ONJ could be a novel, and multifactorial treatment for DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Autophagy , Diabetic Nephropathies/metabolism , Epithelial-Mesenchymal Transition , Inflammasomes , Kidney/metabolism , Rats
8.
Int J Mol Sci ; 23(11)2022 May 29.
Article in English | MEDLINE | ID: mdl-35682773

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by a toxic, aggregation-prone expansion of CAG repeats in the HTT gene with an age-dependent progression that leads to behavioral, cognitive and motor symptoms. Principally affecting the frontal cortex and the striatum, mHTT disrupts many cellular functions. In fact, increasing evidence shows that peripheral tissues are affected by neurodegenerative diseases. It establishes an active crosstalk between peripheral tissues and the brain in different neurodegenerative diseases. This review focuses on the current knowledge of peripheral tissue effects in HD animal and cell experimental models and identifies biomarkers and mechanisms involved or affected in the progression of the disease as new therapeutic or early diagnostic options. The particular changes in serum/plasma, blood cells such as lymphocytes, immune blood cells, the pancreas, the heart, the retina, the liver, the kidney and pericytes as a part of the blood-brain barrier are described. It is important to note that several changes in different mouse models of HD present differences between them and between the different ages analyzed. The understanding of the impact of peripheral organ inflammation in HD may open new avenues for the development of novel therapeutic targets.


Subject(s)
Huntington Disease , Animals , Brain , Corpus Striatum , Disease Models, Animal , Huntingtin Protein/genetics , Huntington Disease/genetics , Inflammation , Mice
9.
Life Sci ; 300: 120575, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35472452

ABSTRACT

Inflammatory processes play a central role in the pathogenesis of diabetic nephropathy (DN) in the early stages of the disease. In vitro approach using cell lines help to understand the mechanisms involves and allow the molecular and biochemical processes. Adult kidney (AK) explants remain an essential instrument for advancing our understanding of the molecular and cellular regulation of signalling pathways from an organotipic view with physiological system interaction integrated. AK explants from T1DM animal model (BB rat) are obtained by slicing central kidney area preserving the organ's cytoarchitecture and reproduce the classical events detected during the DN in an in vivo model such as inflammation, epithelial-mesenchymal transition (EMT) processes by the modulation of a-SMA and e-Cadherin among others which have been determined by qRT-PCR, western-blot and immunohistochemistry. In this regard, AK explants reproduce the signalling pathways involve in DN progression (proinflammatory NFkB and inflammasome complex). This work demonstrates AK explants is a physiological experimental approach for studying the development and progression of DN. Furthermore, the inflammatory processes in AK explants under a diabetic environment and/or BB rats could be modulated by potential treatments for DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Diabetes Mellitus/metabolism , Diabetic Nephropathies/metabolism , Epithelial-Mesenchymal Transition , Fibrosis , Humans , Kidney/metabolism , NF-kappa B , Rats
10.
J Clin Med ; 11(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35268394

ABSTRACT

During Type 1 Diabetes Mellitus (T1DM) progression, there is chronic and low-grade inflammation that could be related to the evolution of the disease. We carried out a systematic review and meta-analysis to evaluate whether peripheral levels of pro-inflammatory markers such as interleukin-1 beta (IL-1ß) is significantly different among patients with or without T1DM, in gender, management of the T1DM, detection in several biological fluids, study design, age range, and glycated hemoglobin. We searched PubMed, Embase, Web of Science, and Scopus databases, and 26 relevant studies (2186 with T1DM, 2047 controls) were included. We evaluated the studies' quality using the Newcastle−Ottawa scale. Meta-analyses were conducted, and heterogeneity and publication bias were examined. Compared with controls, IL-1ß determined by immunoassays (pooled standardized mean difference (SMD): 2.45, 95% CI = 1.73 to 3.17; p < 0.001) was significantly elevated in T1DM. The compared IL-1ß levels in patients <18 years (SMD = 2.81, 95% CI = 1.88−3.74) was significantly elevated. The hemoglobin-glycated (Hbg) levels in patients <18 years were compared (Hbg > 7: SMD = 5.43, 95% CI = 3.31−7.56; p = 0.001). Compared with the study design, IL-1ß evaluated by ELISA (pooled SMD = 3.29, 95% CI = 2.27 to 4.30, p < 0.001) was significantly elevated in T1DM patients. IL-1ß remained significantly higher in patients with a worse management of T1DM and in the early stage of T1DM. IL-1ß levels determine the inflammatory environment during T1DM.

11.
J Clin Med ; 11(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35268526

ABSTRACT

Alterations in ambulatory blood pressure detected by monitoring (ABPM) have been associated with perinatal complications in hypertensive pregnant women. AIM: To establish the relationships between the blood pressure (BP) profiles detected by ABPM and adverse perinatal outcomes in normotensive women with gestational diabetes mellitus (GDM). METHODS: A prospective study of normotensive women in whom 24 h ABPM was performed at 28-32 weeks of pregnancy. The obstetric and perinatal outcomes were evaluated. RESULTS: Two hundred patients were included. Thirty-seven women with GDM and obesity had significantly higher mean systolic BP (SBP) and nocturnal SBP and diastolic BP (DBP) compared to women with only GDM (n = 86). Nocturnal SBP (OR = 1.077; p = 0.015) and obesity (OR = 1.131; p = 0.035) were risk factors for the development of hypertensive disorders of pregnancy (HDPs). Mothers of newborns with neonatal complications (n = 27) had higher nocturnal SBP (103.8 vs. 100 mmHg; p = 0.047) and DBP (62.7 vs. 59.4; p = 0.016). Women who delivered preterm (n = 10) had higher BP and a non-dipper pattern (p = 0.005). CONCLUSIONS: Nocturnal SBP was a predictor of HDPs in normotensive women with obesity or GDM. Alterations in ABPM in these patients were associated with poor obstetric and perinatal outcomes.

12.
J Clin Med ; 11(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35329840

ABSTRACT

Gestational diabetes mellitus (GDM) increases the risk of hypertensive disorders of pregnancy (HDP). We aimed to analyze the altered inflammatory markers and angiogenic factors among women with GDM to identify pregnant women at higher risk of developing HDP. Methods: This was a prospective study of 149 women without hypertension diagnosed in the third trimester with GDM. Inflammatory markers and angiogenic factors were measured at 28−32 weeks of pregnancy. Obstetric and perinatal outcomes were evaluated. Results: More than eight percent of the women developed HDP. Higher levels of the soluble fms-like tyrosine kinase-1/placental growth factor (sFlt-1/PIGF) ratio (4.9 ± 2.6 versus 2.3 ± 1.3, respectively; p < 0.001) and leptin (10.9 ± 0.8 versus 10.08 ± 1.1, respectively; p = 0.038), as well as lower levels of adiponectin (10.5 ± 1.3 versus 12.9 ± 2.7, respectively; p = 0.031), were seen in women who developed HDP versus normotensive women with GDM. A multivariable logistic regression analysis showed that adiponectin had a protective effect with 0.45-fold odds (0.23−0.83; p = 0.012), and that the sFlt-1/PIGF ratio was associated with 2.70-fold odds of developing HDP (CI 95%: 1.24−5.86; p = 0.012). Conclusion: An increase in angiogenic imbalance in the sFlt-1/PIGF ratio in women with GDM was detected and may be an indicator of developing HDP in addition to any subsequent obstetric and perinatal complications.

13.
Mar Drugs ; 19(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34940676

ABSTRACT

Brown algae of the Family Dictyotaceae produce an array of structurally diverse terpenoids, whose biomedical potential in the anti-inflammatory area has been scarcely explored. Herein, the chemical study of the alga Rugulopteryx okamurae has led to the isolation of ten new diterpenoids: rugukadiol A (1), rugukamurals A-C (2-4), and ruguloptones A-F (6-10). The structures of the new compounds were established by spectroscopic means. Compound 1 exhibits an unprecedented diterpenoid skeleton featuring a bridged tricyclic undecane system. Compounds 2-10 belong to the secospatane class of diterpenoids and differ by the oxygenated functions that they contain. In anti-inflammatory assays, the new diterpenoid 1 and the secospatanes 5 and 10 significantly inhibited the production of the inflammatory mediator NO in LPS-stimulated microglial cells Bv.2 and macrophage cells RAW 264.7. Moreover, compounds 1 and 5 were found to strongly inhibit the expression of Nos2 and the pro-inflammatory cytokine Il1b in both immune cell lines.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Phaeophyceae , Animals , Anti-Inflammatory Agents/chemistry , Aquatic Organisms , Diterpenes/chemistry , Mice , RAW 264.7 Cells/drug effects , Structure-Activity Relationship
14.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946583

ABSTRACT

sp2-Iminosugar glycolipids (sp2-IGLs) represent a consolidated family of glycoconjugate mimetics encompassing a monosaccharide-like glycone moiety with a pseudoamide-type nitrogen replacing the endocyclic oxygen atom of carbohydrates and an axially-oriented lipid chain anchored at the pseudoanomeric position. The combination of these structural features makes them promising candidates for the treatment of a variety of conditions, spanning from cancer and inflammatory disorders to parasite infections. The exacerbated anomeric effect associated to the putative sp2-hybridized N-atom imparts chemical and enzymatic stability to sp2-IGLs and warrants total α-anomeric stereoselectivity in the key glycoconjugation step. A variety of O-, N-, C- and S-pseudoglycosides, differing in glycone configurational patterns and lipid nature, have been previously prepared and evaluated. Here we expand the chemical space of sp2-IGLs by reporting the synthesis of α-d-gluco-configured analogs with a bicyclic (5N,6O-oxomethylidene)nojirimycin (ONJ) core incorporating selenium at the glycosidic position. Structure-activity relationship studies in three different scenarios, namely cancer, Leishmaniasis and inflammation, convey that the therapeutic potential of the sp2-IGLs is highly dependent, not only on the length of the lipid chain (linear aliphatic C12 vs. C8), but also on the nature of the glycosidic atom (nitrogen vs. sulfur vs. selenium). The ensemble of results highlights the α-dodecylseleno-ONJ-glycoside as a promising multitarget drug candidate.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Antiprotozoal Agents/therapeutic use , Glycolipids/therapeutic use , Neoplasms/drug therapy , Organoselenium Compounds/therapeutic use , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Glycolipids/chemical synthesis , Glycolipids/chemistry , Humans , Inflammation/drug therapy , Leishmaniasis/drug therapy , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry
15.
Front Immunol ; 12: 632132, 2021.
Article in English | MEDLINE | ID: mdl-33815384

ABSTRACT

Diabetic retinopathy (DR) is one of the most common complications of Diabetes Mellitus (DM) and is directly associated with inflammatory processes. Currently, neuro-inflammation is considered an early event in DR and proceeds via microglia polarization. A hallmark of DR is the presence of retinal reactive gliosis. Here we report the beneficial effect of (SS,1R)-1-docecylsulfiny-5N,6O-oxomethylidenenojirimycin ((Ss)-DS-ONJ), a member of the sp2-iminosugar glycolipid (sp2-IGL) family, by decreasing iNOS and inflammasome activation in Bv.2 microglial cells exposed to pro-inflammatory stimuli. Moreover, pretreatment with (Ss)-DS-ONJ increased Heme-oxygenase (HO)-1 as well as interleukin 10 (IL10) expression in LPS-stimulated microglial cells, thereby promoting M2 (anti-inflammatory) response by the induction of Arginase-1. The results strongly suggest that this is the likely molecular mechanism involved in the anti-inflammatory effects of (SS)-DS-ONJ in microglia. (SS)-DS-ONJ further reduced gliosis in retinal explants from type 1 diabetic BB rats, which is consistent with the enhanced M2 response. In conclusion, targeting microglia polarization dynamics in M2 status by compounds with anti-inflammatory activities offers promising therapeutic interventions at early stages of DR.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Diabetic Retinopathy/drug therapy , Glycolipids/therapeutic use , Sulfoxides/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Diabetic Retinopathy/immunology , Diabetic Retinopathy/pathology , Gliosis , Glycolipids/chemistry , Glycolipids/pharmacology , Inflammasomes/drug effects , Inflammation , Lipopolysaccharides/adverse effects , Microglia/drug effects , Microglia/immunology , Nitric Oxide Synthase Type II/metabolism , Rats , Retina/drug effects , Retina/immunology , Retina/pathology , Signal Transduction/drug effects , Sulfoxides/chemistry , Sulfoxides/pharmacology
16.
J Clin Med ; 9(8)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32784955

ABSTRACT

Somatostatin (SST) is a neuroprotective peptide but little is known regarding the potential role of its anti-inflammatory effects on retinal neuroprotection. In a previous study, we provided the first evidence that topical (eye drops) administration of SST prevents retinal neurodegeneration in streptozotocin (STZ)-induced diabetic rats. However, STZ by itself could cause neurotoxicity, thus acting as a confounding factor. The aims of the present study were: (1) to test the effect of topical administration of SST in the db/db mouse model, a spontaneous model of type 2 diabetes, thus avoiding the confounding effect of STZ on neurodegeneration; (2) to further explore the anti-inflammatory mechanisms of SST in glial cells. This task was performed by using mouse retinal explants and cell cultures. In summary, we confirm that SST topically administered was able to prevent retinal neurodysfunction and neurodegeneration in db/db mice. Furthermore, we found that SST prevented the activation of the classical M1 response of Bv.2 microglial cells upon Lipopolysaccharide (LPS) stimulation as a potent pro-inflammatory trigger. The anti-inflammatory effect of SST in Bv.2 cells was also observed in response to hypoxia. In conclusion, we provide evidence that the neuroprotective effect of SST in diabetic retinas can be largely attributed to anti-inflammatory mechanisms.

17.
Eur J Med Chem ; 182: 111604, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31425910

ABSTRACT

Immunomodulatory glycolipids, among which α-galactosylceramide (KRN7000) is an iconic example, have shown strong therapeutic potential in a variety of conditions ranging from cancer and infection to autoimmune or neurodegenerative diseases. A main difficulty for those channels is that they often provoke a cytokine storm comprising both pro- and anti-inflammatory mediators that antagonize each other and negatively affect the immune response. The synthesis of analogues with narrower cytokine secretion-inducing capabilities is hampered by the intrinsic difficulty at controlling the stereochemical outcome in glycosidation reactions, particularly if targeting the α-anomer, which seriously hampers drug optimization strategies. Here we show that replacing the monosaccharide glycone by a sp2-iminosugar glycomimetic moiety allows accessing N-linked sp2-iminosugar glycolipids (sp2-IGLs) with total α-stereocontrol in a single step with no need of protecting groups or glycosidation promotors. The lipid tail has been then readily tailored by incorporating polyfluoroalkyl segments of varied lengths in view of favouring binding to the lipid binding site of the master p38 mitogen activated protein kinase (p38 MAPK), thereby polarizing the immune response in a cell-context dependent manner. The compounds have been evaluated for their antiproliferative, anti-leishmanial and anti-inflammatory activities in different cell assays. The size of the fluorous segment was found to be critical for the biological activity, probably by regulating the aggregation and membrane-crossing properties, whereas the hydroxylation profile (gluco or galacto-like) was less relevant. Biochemical and computational data further support a mechanism of action implying binding to the allosteric lipid binding site of p38 MAPK and subsequent activation of the noncanonical autophosphorylation route. The ensemble of results provide a proof of concept of the potential of sp2-IGLs as immunoregulators.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Glycolipids/chemical synthesis , Glycolipids/chemistry , Glycolipids/pharmacology , Humans , Imino Sugars/chemical synthesis , Imino Sugars/chemistry , Imino Sugars/pharmacology , Immunologic Factors/chemical synthesis , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Mice , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Phosphorylation/drug effects , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Dis Model Mech ; 12(7)2019 07 16.
Article in English | MEDLINE | ID: mdl-31262748

ABSTRACT

Insulin receptor substrate 2 (IRS2) is a key downstream mediator of insulin and insulin-like growth factor 1 (IGF1) signalling pathways and plays a major role in liver metabolism. The aim of this study was to investigate whether IRS2 had an impact on the hepatic fibrotic process associated with cholestatic injury. Bile duct ligation (BDL) was performed in wild-type (WT) and Irs2-deficient (IRS2KO) female mice. Histological and biochemical analyses, together with fibrogenic and inflammatory responses were evaluated in livers from mice at 3, 7 and 28 days following BDL. We also explored whether activation of human hepatic stellate cells (HSCs) induced by IGF1 was modulated by IRS2. IRS2KO mice displayed reduced disruption of liver histology, such hepatocyte damage and excess deposition of extracellular matrix components, compared with WT mice at 3 and 7 days post-BDL. However, no histological differences between genotypes were found at 28 days post-BDL. The less pro-inflammatory profile of bile acids accumulated in the gallbladder of IRS2KO mice after BDL corresponded with the reduced expression of pro-inflammatory markers in these mice. Stable silencing of IRS2 or inhibition of ERK1/2 reduced the activation of human LX2 cells and also reduced induction of MMP9 upon IGF1 stimulation. Furthermore, hepatic MMP9 expression was strongly induced after BDL in WT mice, but only a slight increase was found in mice lacking IRS2. Our results have unravelled the signalling pathway mediated by IGF1R-IRS2-ERK1/2-MMP9 as a key axis in regulating HSC activation, which might be therapeutically relevant for targeting liver fibrosis.


Subject(s)
Cholestasis/complications , Insulin Receptor Substrate Proteins/genetics , Liver Cirrhosis/genetics , Animals , Bile Ducts/pathology , Cell Line , Cholestasis/pathology , Female , Hepatic Stellate Cells/pathology , Humans , Insulin-Like Growth Factor I/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Mice , Mice, Knockout , Signal Transduction
19.
Front Aging Neurosci ; 10: 203, 2018.
Article in English | MEDLINE | ID: mdl-30026694

ABSTRACT

Retinal degenerative diseases are a group of heterogeneous diseases that include age-related macular degeneration (AMD), retinitis pigmentosa (RP), and diabetic retinopathy (DR). The progressive degeneration of the retinal neurons results in a severe deterioration of the visual function. Neuroinflammation is an early hallmark of many neurodegenerative disorders of the retina including AMD, RP and DR. Microglial cells, key components of the retinal immune defense system, are activated in retinal degenerative diseases. In the microglia the interplay between the proinflammatory/classically activated or antiinflammatory/alternatively activated phenotypes is a complex dynamic process that occurs during the course of disease due to the different environmental signals related to pathophysiological conditions. In this regard, an adequate transition from the proinflammatory to the anti-inflammatory response is necessary to counteract retinal neurodegeneration and its subsequent damage that leads to the loss of visual function. Insulin like-growth factor-1 (IGF-1) has been considered as a pleiotropic factor in the retina under health or disease conditions and several effects of IGF-1 in retinal immune modulation have been described. In this review, we provide recent insights of inflammation as a common feature of retinal diseases (AMD, RP and RD) highlighting the role of microglia, exosomes and IGF-1 in this process.

20.
Acta Ophthalmol ; 96(1): e19-e26, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28127871

ABSTRACT

PURPOSE: Loss of pericytes is one the key events in the pathogenesis of diabetic retinopathy. We have previously demonstrated that human retinal pericytes (HRP) are more vulnerable to intermittent than stable high glucose concentrations, with an increase in apoptosis. Our aim was to explore the expression of molecules involved in pro-apoptotic and survival pathways in pericytes cultured in stable/intermittent high glucose and/or hypoxia, to clarify the mechanisms of action of these diabetic-like stressing stimuli. METHODS: Human retinal pericytes (HRP) were exposed intermittently at 48-hr intervals to high/physiological glucose for 8 days (intHG) and/or hypoxia over the last 48 hr. Control cells were kept in stable physiological and high glucose. Cell proliferation and apoptosis were assessed. The expression of pro-apoptotic and pro-survival molecules was evaluated by Western blotting. Caspase-8 translocation from the cytoplasm into the nucleus was checked by Western blotting of nuclear versus cytoplasmic fractions and immunofluorescence. RESULTS: Hypoxia, alone and combined with intHG, increased HRP apoptosis and decreased proliferation. Pro-apoptotic molecules increased in HRP cultured in these conditions, while some survival markers decreased. Conversely, in stable HG, pro-apoptotic molecules were stable or even decreased, and survival factors increased. Translocation of caspase-8 from cytoplasm into nucleus indicates a primary role for this molecule in inducing apoptosis. CONCLUSION: Diabetic-like conditions are able to stimulate pericyte apoptosis through activation of pro-apoptotic molecules, leading to an imbalance between pro-apoptotic and survival signalling pathways, with caspase-8 playing a pivotal role. Our identification of such intermediates could help finding new therapeutic approaches for the prevention of diabetic retinopathy.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis , Diabetic Retinopathy/metabolism , Pericytes/pathology , Blotting, Western , Cell Count , Cell Proliferation , Cell Survival , Cells, Cultured , Diabetic Retinopathy/pathology , Humans , Pericytes/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...