Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 686: 986-994, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31200314

ABSTRACT

The management of vineyards depends on the use of plant protection agents. Regardless of the numerous environmental impacts that these pesticides generate during their production, their dosage as pest control agents in vineyards causes an important toxic effect that must be monitored. Copper-based inorganic pesticides are the most widely used agents to control fungal diseases in humid wine-growing regions. It is, however, significant that the environmental analysis of their use through the Life Cycle Assessment (LCA) methodology does not provide detailed information on the potential toxicity of this type of pesticides. Hence, most studies report average values for copper characterization factors (CFs), excluding local soil characteristics. The objective of the study was the spatial characterization of the ecotoxicity factors of copper soil emissions as a function of the chemical characteristics of vineyard soils located in Portugal and Galicia (NW Spain). A multiple linear regression model was applied to calculate the comparative toxic potential. Subsequently, CFs for copper were calculated based on spatial differentiation considering the variable properties of the soil within each wine appellation. The CFs obtained for the area evaluated ranged from 141 to 5937 PAF·m3·day/kgCu emitted, for fibric histosols (HSf) and dystic cambisols (CMd), respectively. Moreover, the average values obtained for Galician and Portuguese soils were 1145 and 2274 PAF·m3·day/kgCu emitted, respectively. The results obtained illustrate the high variability of CF values as a function of the chemical characteristics of each type of soil. For example, Cu soil mobility was linked to organic carbon content and pH. Finally, to validate the representativeness of the calculated CFs, these were applied to the results of 12 literature life cycle inventories of grape production in the area evaluated, revealing that impact scores associated with Cu emissions can considerably vary when spatially-differentiated CFs are implemented.

2.
Water Sci Technol ; 72(5): 730-7, 2015.
Article in English | MEDLINE | ID: mdl-26287831

ABSTRACT

Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).


Subject(s)
Models, Economic , Water Pollution/prevention & control , Water Purification/economics , Agriculture , Australia , Conservation of Natural Resources , Ecosystem , Environmental Pollution , Nitrogen/economics , Queensland , Water , Water Pollution/economics
3.
Environ Technol ; 36(17): 2227-38, 2015.
Article in English | MEDLINE | ID: mdl-25803484

ABSTRACT

This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads.


Subject(s)
Dairy Products/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Purification/methods , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Dairy Products/microbiology , Equipment Design , Flocculation , Kinetics , Methane/metabolism , Waste Disposal, Fluid/instrumentation , Wastewater/microbiology , Water Purification/instrumentation
4.
Environ Monit Assess ; 184(10): 6197-210, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22048923

ABSTRACT

Modelling can be a useful management tool because models allow the understanding of water body response to different pollution pressure scenarios which may help on the decision-making process and in prosecuting the Water Framework Directive objectives. This study aims to evaluate the usage of simple water quality models (Qual2Kw) applied to small river basins in order to better understand the response of a river to different loads of nitrogen and phosphorus. Qual2Kw model was applied to Cértima River (Portugal), a small river that ends in a shallow lake called Pateira Fermentelos and represents a very important ecosystem to the local community. Along its pathway, Cértima River has a significant enrichment in nutrients due to agriculture, livestock, domestic sewage and industrial effluents discharged into the river. In case of nitrogen, the highest loads are from domestic (44%) and diffuse (35%) sources. The main sources of phosphorous are domestic (46%), livestock (24%) and diffuse sources (20%). Cértima River is strongly enriched with nutrients, and neither nitrogen nor phosphorous is limiting the algal growth. According to the criterion of Dodds et al. (Water Res, 32(5):1455-1462, 1998), the river is classified as eutrophic. By comparing in stream measurements with Qual2Kw simulations, it can be concluded that it would be necessary to decrease the actual pollutants loads of nitrogen and phosphorous 5 and 10 times, respectively, in order to change Cértima River classification from eutrophic to mesotrophic.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Agriculture/statistics & numerical data , Population Density , Portugal , Waste Disposal, Fluid/statistics & numerical data
5.
Biotechnol Bioeng ; 96(2): 244-9, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-16900520

ABSTRACT

Recent environmental concerns have prompted a re-evaluation of conventional management strategies and refueled the search of innovative waste management practices. In this sense, the anaerobic digestion of both fat and the remaining complex organic matter present in dairy wastewaters is attractive, although the continuous operation of high rate anaerobic processes treating this type of wastewaters causes the failure of the process. This work accesses the influence of non-feeding period length on the intermittent operation of mesophilic UASB reactors treating dairy wastewater, in order to allow the biological degradation to catch up with adsorption phenomenon. During the experiments, two UASB reactors were subject to three organic loading rates, ranging from 6 to 12 g(COD) x L(-1) x d(-1), with the same daily load applied to both reactors, each one with a different non-feeding period. Both reactors showed good COD removal efficiencies (87-92%). A material balance for COD in the reactors during the feeding and non-feeding periods showed the importance of the feedless period, which allowed the biomass to degrade substrate that was accumulated during the feeding period. The reactor with the longest non-feeding period had a better performance, which resulted in a higher methane production and adsorption capacity for the same organic load applied with a consequent less accumulation of substrate into the biomass. In addition, both reactors had a stable operation for the organic load of 12 g(COD) x L(-1) x d(-1), which is higher than the maximum applicable load reported in literature for continuous systems (3-6 g(COD) x L(-1) x d(-1)).


Subject(s)
Bioreactors , Dairying , Waste Disposal, Fluid/methods , Anaerobiosis , Biomass , Methane/biosynthesis , Time Factors
6.
Water Sci Technol ; 54(2): 103-9, 2006.
Article in English | MEDLINE | ID: mdl-16939090

ABSTRACT

This work compares continuous vs intermittent UASB reactors inoculated with flocculent sludge for the treatment of dairy effluents. The effects of effluent recirculation on the performance of intermittent reactors were assessed as well as the differences in specific methanogenic activity (SMA) with different substrates for the biomass from continuous and intermittent UASB reactors. Compared to the continuous operation the intermittent operation resulted in higher methanization of the removed COD (64-78% and 65-88%, respectively) whilst the effluent recirculation presented beneficial effects when applied during the stabilization period and was clearly detrimental when applied during the feed period of the intermittent operation. The SMA tests showed that the intermittent operation causes a shift in the microbial populations towards a better adaptation for the degradation of complex substrates confirmed by the meaningfull contribution of methane production through a pathway other than acetoclastic methanogenesis observed in the biomass taken from intermittent UASB reactors.


Subject(s)
Dairying , Sewage , Anaerobiosis , Flocculation , Methane/chemistry , Sewage/microbiology
7.
Water Res ; 39(8): 1511-8, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15878022

ABSTRACT

This work accesses the influence of cycle duration on the intermittent operation of mesophilic UASB reactors inoculated with flocculent sludge and used in dairy wastewater (DWW) treatment. Five cycle lengths ranging from 24 to 144 h were compared for loads between 2.5 and 29.0 gCOD/l/d. COD balances are presented which demonstrate the importance of a feedless period in the conversion to methane of the substrates removed during the feed period. The maximum applicable loads determined for the system were higher for the longer cycle times. The higher conversion to methane of the removed COD was obtained for the 96 h cycle (48 h feed + 48 h feedless) resulting in a more stable operation. The 96 h cycle (48 h feed + 48 h feedless) was considered as the optimum for the treatment of dairy effluents in intermittent UASB reactors. Compared to the maximum applicable loads reported in the literature for continuous systems (3-6 gCOD/l/d) treating dairy effluents the stable operation loads attained with intermittent operation were considerably higher (22 gCOD/l/d).


Subject(s)
Bioreactors , Dairying , Waste Disposal, Fluid/methods , Kinetics
8.
Water Sci Technol ; 44(4): 49-56, 2001.
Article in English | MEDLINE | ID: mdl-11575100

ABSTRACT

Three lab-scale UASB reactors operated at 35 degrees C in an intermittent mode were subject to different step shocks: hydraulic, organic and feed fat content. The results show that the reactors have good resistance to the applied shocks and suggest that a feedless period is beneficial to the performance of the reactors, due to stabilisation of accumulated organic matter.


Subject(s)
Dairying , Waste Disposal, Fluid/methods , Animals , Biodegradation, Environmental , Bioreactors , Cattle , Oxygen/metabolism , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL