Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 51(2): 354-362, 2019 02.
Article in English | MEDLINE | ID: mdl-30643257

ABSTRACT

The human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, thus impairing analysis accuracy. Here we present a graph reference genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.0 million insertions and deletions (indels). The pipeline processes one whole-genome sequencing sample in 6.5 h using a system with 36 CPU cores. We show that using a graph genome reference improves read mapping sensitivity and produces a 0.5% increase in variant calling recall, with unaffected specificity. Structural variations incorporated into a graph genome can be genotyped accurately under a unified framework. Finally, we show that iterative augmentation of graph genomes yields incremental gains in variant calling accuracy. Our implementation is an important advance toward fulfilling the promise of graph genomes to radically enhance the scalability and accuracy of genomic analyses.


Subject(s)
Genome, Human/genetics , Genomics/methods , Humans , Polymorphism, Single Nucleotide/genetics , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Sequence Deletion/genetics , Whole Genome Sequencing/methods
2.
Cancer Res ; 77(21): e3-e6, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29092927

ABSTRACT

The Seven Bridges Cancer Genomics Cloud (CGC; www.cancergenomicscloud.org) enables researchers to rapidly access and collaborate on massive public cancer genomic datasets, including The Cancer Genome Atlas. It provides secure on-demand access to data, analysis tools, and computing resources. Researchers from diverse backgrounds can easily visualize, query, and explore cancer genomic datasets visually or programmatically. Data of interest can be immediately analyzed in the cloud using more than 200 preinstalled, curated bioinformatics tools and workflows. Researchers can also extend the functionality of the platform by adding their own data and tools via an intuitive software development kit. By colocalizing these resources in the cloud, the CGC enables scalable, reproducible analyses. Researchers worldwide can use the CGC to investigate key questions in cancer genomics. Cancer Res; 77(21); e3-6. ©2017 AACR.


Subject(s)
Computational Biology , Genomics , Neoplasms/genetics , Genome, Human , Humans , Internet , Research , Software
3.
Methods Mol Biol ; 1381: 223-37, 2016.
Article in English | MEDLINE | ID: mdl-26667464

ABSTRACT

Chromosomal rearrangements resulting in the creation of novel gene products, termed fusion genes, have been identified as driving events in the development of multiple types of cancer. As these gene products typically do not exist in normal cells, they represent valuable prognostic and therapeutic targets. Advances in next-generation sequencing and computational approaches have greatly improved our ability to detect and identify fusion genes. Nevertheless, these approaches require significant computational resources. Here we describe an approach which leverages cloud computing technologies to perform fusion gene detection from RNA sequencing data at any scale. We additionally highlight methods to enhance reproducibility of bioinformatics analyses which may be applied to any next-generation sequencing experiment.


Subject(s)
Cloud Computing , Gene Fusion , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Humans , Neoplasms/genetics , RNA/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL