Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Vet Immunol Immunopathol ; 272: 110758, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38669937

ABSTRACT

Polymorphonuclear cells (PMN) provide a rapid response to infection and tissue damage and stress can modify these critical innate immune defences. The study of adrenergic receptor (AR) expression and function in bovine PMNs is limited but both neutrophils and eosinophils express numerous AR genes but differ significantly in their expression of individual AR genes. A flow cytometric technique was developed to differentiate between bovine neutrophils and eosinophils so both neutrophil and eosinophil responses to adrenergic agonists could be analysed. Neutrophils and eosinophils displayed significantly different changes in CD11b, L-selectin, and CD44 expression when activated by bovine serum opsonized zymosan and recombinant bovine interferon gamma. The responses of activated and resting neutrophils and eosinophils were then compared following stimulation with endogenous adrenergic agonists, epinephrine (E) norepinephrine (NE), and synthetic agonists targeting α1-, α2-, or ß-ARs. Both resting and activated neutrophils and eosinophils displayed differences in iROS, CD44, and L-selectin expression following stimulation with E and NE. Resting neutrophils displayed pro-inflammatory responses to both E and NE, while resting eosinophils displayed a pro-inflammatory response to only NE. No single synthetic adrenergic agonist fully recapitulated responses observed with either E or NE and responses to adrenergic agonists were dose-dependent. In conclusion, bovine eosinophils and neutrophils responded to multiple adrenergic agonists by altering expression of proteins involved in immune surveillance and pro-inflammatory responses. Significant differences in neutrophil and eosinophil responses to adrenergic agonists are consistent with their differences in AR gene expression. This highlights the importance of analysing separately these two PMN subpopulations when investigating the effects of either endogenous or synthetic AR agonists.

2.
Dev Comp Immunol ; 127: 104271, 2022 02.
Article in English | MEDLINE | ID: mdl-34600023

ABSTRACT

The α- and ß-adrenergic receptors (ARs) bind the stress hormones epinephrine (E), norepinephrine (NE), and dopamine and activate diverse physiological responses. A lack of information on AR gene expression in leukocytes limits our understanding of how stress alters immune function. Quantitative analyses of AR gene expression was completed for bovine leukocytes. Individual leukocyte lineages and subpopulations within lineages were isolated with high-speed cell sorting to facilitate a targeted analysis of AR gene expression. These analyses confirmed all 9 AR genes were expressed in bovine leukocytes with marked differences in AR gene expression when comparing among leukocyte lineages. Furthermore, separation of polymorphonuclear cells into neutrophils and eosinophils revealed these key innate immune cells also differ significantly in AR gene expression. This study provides the first comprehensive survey of AR gene expression in immune cells of any mammalian species and provides insight into conflicting reports that stress can either activate or suppress immune function.


Subject(s)
Leukocytes , Norepinephrine , Animals , Cattle , Epinephrine/metabolism , Gene Expression , Leukocytes/metabolism , Norepinephrine/metabolism , Receptors, Adrenergic, beta/metabolism
3.
Vet Immunol Immunopathol ; 242: 110352, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34773748

ABSTRACT

An effective method to isolate functional eosinophils from blood and tissues is required to analyze the multiple roles eosinophils play in innate immunity and tissue homeostasis. Highspeed cell sorting was used to isolate bovine eosinophils from blood polymorphonuclear (PMN) cells and from small intestine intraepithelial leukocytes. Eosinophils and neutrophils were purified from bovine blood with highspeed cell sorting after gating on autofluorescence (FL1) high and low PMN subpopulations. Highspeed sorting of intestinal eosinophils was accomplished by using a combination of positive (CD45+, CD11cLow, side scatterHigh) and negative (CD3-) selection parameters. Eosinophils sorted from blood PMNs were 88.6 ± 5.8 % (mean + 1 SD; n = 4) pure and yielded significantly (p < 0.05) more RNA than purified neutrophils. Analysis of Toll-like receptor (TLR) gene expression and TLR ligand-induced pro-inflammatory cytokine (IL-1, IL-6, IL-8, and TNFα) gene expression demonstrated significant (p < 0.01) functional differences between blood eosinophils and neutrophils. Eosinophils varied between 14.7 % to 29.3 % of CD45+ IELs and purity of sorted intestinal eosinophils was 95 + 3.5 % (mean + 1SD; n = 5). A comparison of mucosal and blood eosinophils revealed significant (p < 0.01) differences in TLR gene expression, supporting the hypothesis that functionally distinct eosinophil populations are present in blood and tissues. In conclusion, highspeed cell sorting provides an effective method to isolate viable eosinophils from blood and tissues that can then be used for transcriptome analyses and in vitro function assays.


Subject(s)
Eosinophils , Intestine, Small/cytology , Leukocyte Count , Animals , Cattle , Eosinophils/cytology , Leukocyte Count/veterinary , Neutrophils
4.
Anim Microbiome ; 3(1): 62, 2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34538279

ABSTRACT

BACKGROUND: The bovine upper respiratory tract (URT) microbiome includes opportunistic pathogens that cause respiratory disease and stress associated with maternal separation and transportation contributes to the severity of this respiratory disease. Stress is known to alter the gut microbiome but little is known regarding the effect of stress on the URT microbiota. This study used six-month old suckling beef calves to investigate whether maternal separation (weaned), by itself or combined with transportation (weaned + transport), altered the URT microbiome and host immune responses to resident opportunistic pathogens. RESULTS: Taxonomic and functional composition of the URT microbiome in suckling and weaned beef calves did not change significantly when serially sampled over a one-month period. Subtle temporal changes in the URT microbiome composition were observed in weaned + transport calves. Total bacterial density was lower (p < 0.05) on day 4 post-weaning in both the weaned and weaned + transport groups when compared to suckling calves. In addition, significant (p < 0.05) temporal changes in the density of the opportunistic pathogens, M. haemolytica and P. multocida, were observed independent of treatment but these changes did not correlate with significantly increased (p < 0.05) serum antibody responses to both of these bacteria in the weaned and weaned + transport groups. Serum antibody responses to My. bovis, another opportunistic pathogen, remained unchanged in all treatment groups. Weaning, by itself and in combination with transportation, also had significant (p < 0.05) short- (2 to 8 days post-weaning) and long-term (28 days post-weaning) effects on the expression of adrenergic receptor genes in blood leukocytes when compared to age-matched suckling beef calves. CONCLUSIONS: Maternal separation (weaning) and transportation has minor effects on the taxonomic and functional composition of the URT microbiome and temporal changes in the density of opportunistic pathogen residing in the URT did not correlate with significant changes in immune responses to these bacteria. Significant changes in adrenergic receptor expression in blood leukocytes following weaning, with or without transportation, suggests altered neuroimmune regulation should be further investigated as a mechanism by which stress can alter host-microbiome interactions for some opportunistic respiratory pathogens that reside in the URT.

5.
Genome Biol ; 22(1): 97, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33823910

ABSTRACT

The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.


Subject(s)
Computational Biology/methods , Genome, Viral , Genomics/methods , Virus Integration , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Proviruses/genetics , Retroviridae/genetics
6.
Front Immunol ; 11: 586659, 2020.
Article in English | MEDLINE | ID: mdl-33329565

ABSTRACT

Mycobacterial diseases of cattle are responsible for considerable production losses worldwide. In addition to their importance in animals, these infections offer a nuanced approach to understanding persistent mycobacterial infection in native host species. Mycobacteriumavium ssp. paratuberculosis (MAP) is an enteric pathogen that establishes a persistent, asymptomatic infection in the small intestine. Difficulty in reproducing infection in surrogate animal models and limited understanding of mucosal immune responses that control enteric infection in the natural host have been major barriers to MAP vaccine development. We previously developed a reproducible challenge model to establish a consistent MAP infection using surgically isolated intestinal segments prepared in neonatal calves. In the current study, we evaluated whether intestinal segments could be used to screen parenteral vaccines that alter mucosal immune responses to MAP infection. Using Silirum® - a commercial MAP bacterin - we demonstrate that intestinal segments provide a platform for assessing vaccine efficacy within a relatively rapid period of 28 days post-infection. Significant differences between vaccinates and non-vaccinates could be detected using quantitative metrics including bacterial burden in intestinal tissue, MAP shedding into the intestinal lumen, and vaccine-induced mucosal immune responses. Comparing vaccine-induced responses in mucosal leukocytes isolated from the site of enteric infection versus blood leukocytes revealed substantial inconsistences between these immune compartments. Moreover, parenteral vaccination with Silirum did not induce equal levels of protection throughout the small intestine. Significant control of MAP infection was observed in the continuous but not the discrete Peyer's patches. Analysis of these regional mucosal immune responses revealed novel correlates of immune protection associated with reduced infection that included an increased frequency of CD335+ innate lymphoid cells, and increased expression of IL21 and IL27. Thus, intestinal segments provide a novel model to accelerate vaccine screening and discovery by testing vaccines directly in the natural host and provides a unique opportunity to interrogate mucosal immune responses to mycobacterial infections.


Subject(s)
Bacterial Vaccines/immunology , Cattle Diseases/immunology , Immunity, Mucosal/immunology , Paratuberculosis/immunology , Paratuberculosis/prevention & control , Animals , Cattle , Cattle Diseases/prevention & control , Mycobacterium avium subsp. paratuberculosis/immunology
7.
Viruses ; 12(12)2020 12 12.
Article in English | MEDLINE | ID: mdl-33322850

ABSTRACT

A number of characteristics including lack of virulence and the ability to grow to high titers, have made bovine adenovirus-3 (BAdV-3) a vector of choice for further development as a vaccine-delivery vehicle for cattle. Despite the importance of blood leukocytes, including dendritic cells (DC), in the induction of protective immune responses, little is known about the interaction between BAdV-3 and bovine blood leukocytes. Here, we demonstrate that compared to other leukocytes, bovine blood monocytes and neutrophils are significantly transduced by BAdV404a (BAdV-3, expressing enhanced yellow green fluorescent protein [EYFP]) at a MOI of 1-5 without a significant difference in the mean fluorescence of EYFP expression. Moreover, though expression of some BAdV-3-specific proteins was observed, no progeny virions were detected in the transduced monocytes or neutrophils. Interestingly, addition of the "RGD" motif at the C-terminus of BAdV-3 minor capsid protein pIX (BAV888) enhanced the ability of the virus to enter the monocytes without altering the tropism of BAdV-3. The increased uptake of BAV888 by monocytes was associated with a significant increase in viral genome copies and the abundance of EYFP and BAdV-3 19K transcripts compared to BAdV404a-transduced monocytes. Our results suggest that BAdV-3 efficiently transduces monocytes and neutrophils in the absence of viral replication. Moreover, RGD-modified capsid significantly increases vector uptake without affecting the initial interaction with monocytes.


Subject(s)
Adenoviridae Infections/veterinary , Cattle Diseases/virology , Leukocytes/virology , Mastadenovirus/physiology , Viral Tropism , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/metabolism , Cell Line , Gene Expression , Gene Expression Regulation, Viral , Leukocytes/immunology , Leukocytes/metabolism , Transduction, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
8.
Front Microbiol ; 11: 587306, 2020.
Article in English | MEDLINE | ID: mdl-33193242

ABSTRACT

The combined application of linear amplification-mediated PCR (LAM-PCR) protocols with next-generation sequencing (NGS) has had a large impact on our understanding of retroviral pathogenesis. Previously, considerable effort has been expended to optimize NGS methods to explore the genome-wide distribution of proviral integration sites and the clonal architecture of clinically important retroviruses like human T-cell leukemia virus type-1 (HTLV-1). Once sequencing data are generated, the application of rigorous bioinformatics analysis is central to the biological interpretation of the data. To better exploit the potential information available through these methods, we developed an optimized bioinformatics pipeline to analyze NGS clonality datasets. We found that short-read aligners, specifically designed to manage NGS datasets, provide increased speed, significantly reducing processing time and decreasing the computational burden. This is achieved while also accounting for sequencing base quality. We demonstrate the utility of an additional trimming step in the workflow, which adjusts for the number of reads supporting each insertion site. In addition, we developed a recall procedure to reduce bias associated with proviral integration within low complexity regions of the genome, providing a more accurate estimation of clone abundance. Finally, we recommend the application of a "clean-and-recover" step to clonality datasets generated from large cohorts and longitudinal studies. In summary, we report an optimized bioinformatics workflow for NGS clonality analysis and describe a new set of steps to guide the computational process. We demonstrate that the application of this protocol to the analysis of HTLV-1 and bovine leukemia virus (BLV) clonality datasets improves the quality of data processing and provides a more accurate definition of the clonal landscape in infected individuals. The optimized workflow and analysis recommendations can be implemented in the majority of bioinformatics pipelines developed to analyze LAM-PCR-based NGS clonality datasets.

9.
Vaccine ; 37(51): 7455-7462, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31590936

ABSTRACT

Bovine respiratory disease (BRD) remains a major health problem despite extensive use of vaccines during the post-weaning period. Apparent vaccine failure is attributed, in part, to primary vaccination during the period of greatest risk for BRD, providing inadequate time for onset of protective immunity. The current study investigated whether intranasal (IN) vaccination of 3-6 week old calves with a modified-live viral (MLV) vaccine induced sufficient immune memory to prevent respiratory disease and accelerate onset of protective immunity 5 months later. Vaccine groups included naïve controls, a single IN vaccination at 3-6 weeks of age, primary IN vaccination at 6 months, and either an IN or subcutaneous (SC) booster vaccination at 6 months (n = 10/group). All calves were challenged with BHV-1 four days after vaccination at 6 months of age. Primary IN vaccination at 6 months did not significantly reduce clinical disease but significantly (P < 0.01) reduced virus shedding. A single IN vaccination at 3-6 weeks of age significantly (P < 0.05) reduced weight loss but did not reduce fever or virus shedding. Both IN and SC booster vaccinations, significantly (P < 0.01) reduced clinical disease but virus shedding was significantly (P < 0.001) reduced only by IN booster vaccination. Reduction in virus shedding was significantly (P < 0.01) greater following booster versus primary IN vaccination at 6 months. All vaccination regimes significantly (P < 0.01) reduced secondary bacterial pneumonia and altered interferon responses relative to naïve controls. Only IN booster vaccination significantly (P < 0.05) increased BHV-1 specific IgA in nasal secretions. These results confirm primary MLV IN vaccination at 3 to 6 weeks of age, when virus neutralizing maternal antibody was present, induced immune memory with a 5 month duration. This immune memory supported rapid onset of protective immunity four days after an IN booster vaccination.


Subject(s)
Herpesvirus 1, Bovine/immunology , Herpesvirus Vaccines/administration & dosage , Immunization, Secondary/methods , Immunologic Memory/drug effects , Infectious Bovine Rhinotracheitis/prevention & control , Pneumonia, Bacterial/prevention & control , Administration, Intranasal , Animals , Animals, Newborn , Antibodies, Viral/blood , Cattle , Colostrum/chemistry , Colostrum/immunology , Female , Herpesvirus 1, Bovine/drug effects , Herpesvirus 1, Bovine/pathogenicity , Immunity, Mucosal/drug effects , Immunoglobulin A/blood , Infectious Bovine Rhinotracheitis/immunology , Infectious Bovine Rhinotracheitis/mortality , Infectious Bovine Rhinotracheitis/virology , Male , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality , Pregnancy , Survival Analysis , Vaccination/methods , Vaccines, Attenuated , Viral Load/drug effects , Virus Shedding/drug effects , Weight Loss/drug effects
10.
Nat Commun ; 8: 15264, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28534499

ABSTRACT

Human T-cell leukaemia virus type-1 (HTLV-1) and bovine leukaemia virus (BLV) infect T- and B-lymphocytes, respectively, provoking a polyclonal expansion that will evolve into an aggressive monoclonal leukaemia in ∼5% of individuals following a protracted latency period. It is generally assumed that early oncogenic changes are largely dependent on virus-encoded products, especially TAX and HBZ, while progression to acute leukaemia/lymphoma involves somatic mutations, yet that both are independent of proviral integration site that has been found to be very variable between tumours. Here, we show that HTLV-1/BLV proviruses are integrated near cancer drivers which they affect either by provirus-dependent transcription termination or as a result of viral antisense RNA-dependent cis-perturbation. The same pattern is observed at polyclonal non-malignant stages, indicating that provirus-dependent host gene perturbation contributes to the initial selection of the multiple clones characterizing the asymptomatic stage, requiring additional alterations in the clone that will evolve into full-blown leukaemia/lymphoma.


Subject(s)
Carcinogenesis/genetics , Human T-lymphotropic virus 1/physiology , Leukemia Virus, Bovine/physiology , Leukemia/genetics , Leukemia/virology , Proviruses/physiology , Adult , Animals , Cattle , Female , Genome , Host-Pathogen Interactions/genetics , Human T-lymphotropic virus 1/genetics , Humans , Leukemia Virus, Bovine/genetics , Male , Models, Biological , Proviruses/genetics , RNA, Antisense/metabolism , Sheep , Transcription, Genetic , Virus Integration/genetics
11.
Retrovirology ; 13(1): 33, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27141823

ABSTRACT

BACKGROUND: Bovine Leukemia Virus (BLV) is a deltaretrovirus closely related to the Human T cell leukemia virus-1 (HTLV-1). Cattle are the natural host of BLV where it integrates into B-cells, producing a lifelong infection. Most infected animals remain asymptomatic but following a protracted latency period about 5 % develop an aggressive leukemia/lymphoma, mirroring the disease trajectory of HTLV-1. The mechanisms by which these viruses provoke cellular transformation remain opaque. In both viruses little or no transcription is observed from the 5'LTR in tumors, however the proviruses are not transcriptionally silent. In the case of BLV a cluster of RNA polymerase III transcribed microRNAs are highly expressed, while the HTLV-1 antisense transcript HBZ is consistently found in all tumors examined. RESULTS: Here, using RNA-seq, we demonstrate that the BLV provirus also constitutively expresses antisense transcripts in all leukemic and asymptomatic samples examined. The first transcript (AS1) can be alternately polyadenylated, generating a transcript of ~600 bp (AS1-S) and a less abundant transcript of ~2200 bp (AS1-L). Alternative splicing creates a second transcript of ~400 bp (AS2). The coding potential of AS1-S/L is ambiguous, with a small open reading frame of 264 bp, however the transcripts are primarily retained in the nucleus, hinting at a lncRNA-like role. The AS1-L transcript overlaps the BLV microRNAs and using high throughput sequencing of RNA-ligase-mediated (RLM) 5'RACE, we show that the RNA-induced silencing complex (RISC) cleaves AS1-L. Furthermore, experiments using altered BLV proviruses with the microRNAs either deleted or inverted point to additional transcriptional interference between the two viral RNA species. CONCLUSIONS: The identification of novel viral antisense transcripts shows the BLV provirus to be far from silent in tumors. Furthermore, the consistent expression of these transcripts in both leukemic and nonmalignant clones points to a vital role in the life cycle of the virus and its tumorigenic potential. Additionally, the cleavage of the AS1-L transcript by the BLV encoded microRNAs and the transcriptional interference between the two viral RNA species suggest a shared role in the regulation of BLV.


Subject(s)
Leukemia Virus, Bovine/genetics , Leukemia, B-Cell/virology , Lymphoma, B-Cell/virology , MicroRNAs/genetics , RNA, Antisense/genetics , RNA, Viral/genetics , Transcription, Genetic , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Cattle , Enzootic Bovine Leukosis/virology , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/metabolism , RNA, Viral/metabolism , Retroviridae Proteins/genetics , Sheep , Terminal Repeat Sequences
12.
Dev Comp Immunol ; 44(2): 378-88, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24502939

ABSTRACT

Immature myeloid (m)DCs circulating in the blood of cattle have been defined as lineage negative (Lin(-))MHCII(+)CD11c(+)CD205(+) cells. Lin(-)MHCII(+)CD11c(+)CD205(+) mDCs (0.2% blood mononuclear cells) isolated from bovine blood were heterogeneous in cell size and CD205 expression. Using highspeed cell sorting, Lin(-)MHCII(+)CD11c(+)CD205(+) DCs were sorted into CD205(Hi) and CD205(Lo) subpopulations which were phenotypically distinct and differed significantly (P<0.01) in TLR gene expression. CD205(Hi) and CD205(Lo) mDCs were more efficient in macropinocytosis than monocytes and expressed no or little detectable non-specific esterase activity. CD205(Lo) mDCs efficiently activated purified allogeneic T cells and the addition of TLR agonists did not significantly alter this antigen presentation capacity. T cell activation by CD205(Lo) mDCs was associated with differential up-regulation of CD40, CD80, CD86 and TGFß1 gene expression when compared to CD205(Hi) mDCs. In conclusion, two phenotypically and functionally distinct CD11c(+)CD205(+) mDCs were isolated from blood that had an equal capacity to acquire antigen but markedly different capacities to activate T cells.


Subject(s)
Cattle/immunology , Dendritic Cells/immunology , Myeloid Cells/immunology , Animals , Antigen Presentation , Antigens, CD/metabolism , Blood Circulation , CD11c Antigen/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Lectins, C-Type/metabolism , Minor Histocompatibility Antigens , Receptors, Cell Surface/metabolism
13.
Viruses ; 5(1): 295-320, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23337382

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of infant bronchiolitis. The closely related pneumonia virus of mice (PVM) causes a similar immune-mediated disease in mice, which allows an analysis of host factors that lead to severe illness. This project was designed to compare the immune responses to lethal and sublethal doses of PVM strain 15 in Balb/c and C57Bl/6 mice. Balb/c mice responded to PVM infection with an earlier and stronger innate response that failed to control viral replication. Production of inflammatory cyto- and chemokines, as well as infiltration of neutrophils and IFN-γ secreting natural killer cells into the lungs, was more predominant in Balb/c mice. In contrast, C57Bl/6 mice were capable of suppressing both viral replication and innate inflammatory responses. After a sublethal infection, PVM-induced IFN-γ production by splenocytes was stronger early during infection and weaker at late time points in C57Bl/6 mice when compared to Balb/c mice. Furthermore, although the IgG levels were similar and the mucosal IgA titres lower, the virus neutralizing antibody titres were higher in C57Bl/6 mice than in Balb/c mice. Overall, the difference in susceptibility of these two strains appeared to be related not to an inherent T helper bias, but to the capacity of the C57Bl/6 mice to control both viral replication and the immune response elicited by PVM.


Subject(s)
Adaptive Immunity , Immunity, Innate , Murine pneumonia virus/immunology , Pneumovirus Infections/veterinary , Rodent Diseases/immunology , Animals , Chemokines/immunology , Disease Resistance , Female , Humans , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Murine pneumonia virus/physiology , Pneumovirus Infections/immunology , Pneumovirus Infections/virology , Rodent Diseases/virology
14.
Vet Immunol Immunopathol ; 145(1-2): 453-63, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22264737

ABSTRACT

We previously reported that CD21(+) B cells purified from bovine blood do not respond to CpG-ODN stimulation unless either CD14(+) monocytes or B-cell Activating Factor (BAFF), a cytokine produced by activated monocytes, are present. In this report, we present evidence that CD14(+) monocytes are critical for CpG-specific lymphocyte proliferation within the peripheral blood mononuclear cell (PBMC) population but that this response is not mediated by soluble factors produced by CpG-activated monocytes. We further determine that bovine monocytes stimulated with IFN-γ induce expression of the BAFF gene and that recombinant IFN-γ and BAFF induced robust B cell activation when cultured in the absence of CpG ODN. These data suggest that CpG-stimulated monocytes may indirectly promote B cell activation by promoting release of cytokines and/or other soluble factors from accessory cells which in turn act on CpG-stimulated B cells to promote antigen-independent and T cell independent B cell activation. Understanding the T cell independent signals that induce B cell activation has important implications for understanding B cell development in locations where T cells are limited and in understanding polyclonal B cell activation that may contribute to autoimmune diseases.


Subject(s)
B-Cell Activating Factor/pharmacology , B-Lymphocytes/drug effects , Interferon-gamma/pharmacology , Lymphocyte Activation/drug effects , T-Lymphocytes/physiology , Toll-Like Receptor 9/physiology , Animals , Cattle/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Male , Monocytes/drug effects , Monocytes/immunology , Oligodeoxyribonucleotides/immunology , Oligodeoxyribonucleotides/pharmacology , Real-Time Polymerase Chain Reaction/veterinary , T-Lymphocytes/immunology , Toll-Like Receptor 9/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...