Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 270(Pt 1): 131856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693000

ABSTRACT

Biomacromolecules derived from natural sources offer superior biocompatibility, biodegradability, and water-holding capacity, which make them promising scaffolds for tissue engineering. Psyllium seed has gained attention in biomedical applications recently due to its gel-forming ability, which is provided by its polysaccharide-rich content consisting mostly of arabinoxylan. This study focuses on the extraction and gelation of Psyllium seed hydrocolloid (PSH) in a single-step water-based protocol, and scaffold fabrication using freeze-drying method. After characterization of the scaffold, including morphological, mechanical, swelling, and protein adsorption analyses, 3D cell culture studies were done using NIH-3 T3 fibroblast cells on PSH scaffold, and cell viability was assessed using Live/Dead and Alamar Blue assays. Starting from day 1, high cell viability was obtained, and it reached 90 % at the end of 15-day culture period. Cellular morphology on PSH scaffold was monitored via SEM analysis; cellular aggregates then spheroid formation were observed throughout the study. Collagen Type-I and F-actin expressions were followed by immunostaining revealing a 9- and 10-fold increase during long-term culture. Overall, a single-step and non-toxic protocol was developed for extraction and gelation of PSH. Obtained results unveiled that PSH scaffold provided a favorable 3D microenvironment for cells, holding promise for further tissue engineering applications.


Subject(s)
Colloids , Psyllium , Seeds , Tissue Engineering , Tissue Scaffolds , Xylans , Psyllium/chemistry , Xylans/chemistry , Xylans/pharmacology , Tissue Engineering/methods , Animals , Seeds/chemistry , Mice , Colloids/chemistry , Tissue Scaffolds/chemistry , NIH 3T3 Cells , Cell Survival/drug effects , Water/chemistry
2.
ACS Omega ; 9(13): 14955-14962, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585102

ABSTRACT

Magnetic levitation (MagLev) is a powerful and versatile technique that can sort objects based on their density differences. This paper reports the sorting of SH-SY5Y cells for neuronal differentiation by the MagLev technique. Herein, SH-SY5Y cells were differentiated with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). Neuronal differentiation was confirmed by neurite extension measurement and the immunostaining assay. Neurites reached the maximum length on day 9 after sequential treatment with RA-BDNF. Neuronal marker expression of un-/differentiated cells was investigated by ß-III tubulin and neuronal nuclei (NeuN) and differentiated cells exhibited a higher fluorescence intensity compared to un-/differentiated cells. MagLev results revealed that the density of differentiated SH-SY5Y cells gradually increased from 1.04 to 1.06 g/mL, while it remained stable at 1.05 g/mL for un-/differentiated cells. These findings signified that cell density would be a potent indicator of neuronal differentiation. Overall, it was shown that MagLev methodology can provide rapid, label-free, and easy sorting to analyze the differentiation of cells at a single-cell level.

3.
ACS Sens ; 9(4): 2043-2049, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38520356

ABSTRACT

Extracellular vesicles, especially exosomes, have attracted attention in the last few decades as novel cancer biomarkers. Exosomal membrane proteins provide easy-to-reach targets and can be utilized as information sources of their parent cells. In this study, a MagLev-based, highly sensitive, and versatile biosensor platform for detecting minor differences in the density of suspended objects is proposed for exosome detection. The developed platform utilizes antibody-functionalized microspheres to capture exosomal membrane proteins (ExoMPs) EpCAM, CD81, and CD151 as markers for cancerous exosomes, exosomes, and non-small cell lung cancer (NSCLC)-derived exosomes, respectively. Initially, the platform was utilized for protein detection and quantification by targeting solubilized ExoMPs, and a dynamic range of 1-100 nM, with LoD values of 1.324, 0.638, and 0.722 nM for EpCAM, CD81, and CD151, were observed, respectively. Then, the sensor platform was tested using exosome isolates derived from NSCLC cell line A549 and MRC5 healthy lung fibroblast cell line. It was shown that the sensor platform is able to detect and differentiate exosomal biomarkers derived from cancerous and non-cancerous cell lines. Overall, this innovative, simple, and rapid method shows great potential for the early diagnosis of lung cancer through exosomal biomarker detection.


Subject(s)
Epithelial Cell Adhesion Molecule , Exosomes , Lung Neoplasms , Exosomes/chemistry , Humans , Lung Neoplasms/pathology , Epithelial Cell Adhesion Molecule/metabolism , Tetraspanin 28/metabolism , Tetraspanin 28/analysis , Biosensing Techniques/methods , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnosis , Biomarkers, Tumor/analysis , Tetraspanin 24 , A549 Cells
4.
Macromol Biosci ; 24(4): e2300402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38102867

ABSTRACT

This study describes the formation, size control, and penetration behavior of polymer nanodots (Pdots) consisting of single or few chain polythiophene-based conjugated polyelectrolytes (CPEs) via nanophase separation between good solvent and poor solvent of CPE. Though the chain singularity may be associated with dilution nanophase separation suggests that molecules of a good solvent create a thermodynamically driven solvation layer surrounding the CPEs and thereby separating the single chains even in their poor solvents. This statement is therefore corroborated with emission intensity/lifetime, particle size, and scattering intensity of polyelectrolyte in good and poor solvents. Regarding the augmented features, Pdots are implemented into cell imaging studies to understand the nuclear penetration and to differentiate the invasive characteristics of breast cancer cells. The python based red, green, blue (RGB) color analysis   depicts that Pdots have more nuclear penetration ability in triple negative breast cancer cells due to the different nuclear morphology in shape and composition and Pdots have penetrated cell membrane as well as extracellular matrix in spheroid models. The current Pdot protocol and its utilization in cancer cell imaging are holding great promise for gene/drug delivery to target cancer cells by explicitly achieving the very first priority of nuclear intake.


Subject(s)
Fluorescent Dyes , Quantum Dots , Semiconductors , Polymers , Polyelectrolytes , Solvents
5.
Tissue Eng Part A ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37974427

ABSTRACT

Patterning cells to create three-dimensional (3D) cell culture models by magnetic manipulation is a promising technique, which is rapid, simple, and cost-effective. This study introduces a new biopatterning approach based on magnetic manipulation of cells with a bioink that consists alginate, cells, and magnetic nanoparticles. Plackett-Burman and Box-Behnken experimental design models were used to optimize bioink formulation where NIH-3T3 cells were utilized as a model cell line. The patterning capability was confirmed by light microscopy through 7 days culture time. Then, biopatterned 3D cardiac structures were formed using H9c2 cardiomyocyte cells. Cellular and extracellular components, F-actin and collagen Type I, and cardiac-specific biomarkers, Troponin T and MYH6, of biopatterned 3D cardiac structures were observed successfully. Moreover, Doxorubicin (DOX)-induced cardiotoxicity was investigated for developed 3D model, and IC50 value was calculated as 8.1 µM for biopatterned 3D cardiac structures, which showed higher resistance against DOX-exposure compared to conventional two-dimensional cell culture. Hereby, developed biopatterning methodology proved to be a simple and rapid approach to fabricate 3D cardiac models, especially for drug screening applications.

6.
Analyst ; 148(4): 898-905, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36688900

ABSTRACT

Paper-based microfluidics is an emerging analysis tool used in various applications, especially in point-of-care (PoC) diagnostic applications, due to its advantages over other types of microfluidic devices in terms of simplicity in both production and operation, cost-effectiveness, rapid response time, low sample consumption, biocompatibility, and ease of disposal. Recently, various techniques have been developed and utilized for the fabrication of paper-based microfluidics, such as photolithography, micro-embossing, wax and PDMS printing, etc. In this study, we offer a fabrication methodology for a microfluidic paper-based immunosorbent assay (µPISA) platform and the detection of Hepatitis C Virus (HCV) was carried out to validate this platform. A laser ablation technique was utilized to form hydrophobic barriers easily and rapidly, which was the major advantage of the developed fabrication methodology. The characterization of the µPISA platform was performed in terms of micro-channel properties using bright-field (BF) microscopy, and surface properties using scanning electron microscopy (SEM). At the same time, sample volume and liquid handling capacity were analyzed quantitatively. Ablation speed (S) and laser power (P) were optimized, and it was shown that one combination (10P60S) provided minimal deviation in micro-channel dimensions and prevented deterioration of hydrophobic barriers. Also, the minimum hydrophobic barrier width, which prevents cross-barrier bleeding, was determined to be 255.92 ± 10.01 µm. Furthermore, colorimetric HCV NS3 detection was implemented to optimize and validate the µPISA platform. Here, HCV NS3 in both PBS and human blood plasma was successfully detected by the naked eye at concentrations as low as 1 ng mL-1 and 10 ng mL-1, respectively. Moreover, the limit of detection (LoD) values for HCV NS3 were acquired as 0.796 ng mL-1 in PBS and 2.203 ng mL-1 in human blood plasma with a turnaround time of 90 min. In comparison with conventional ELISA, highly sensitive and rapid HCV NS3 detection was accomplished colorimetrically on the developed µPISA platform.


Subject(s)
Hepatitis C , Microfluidic Analytical Techniques , Humans , Microfluidics/methods , Immunosorbents , Hepacivirus , Colorimetry , Hepatitis C/diagnosis
7.
Biomater Sci ; 10(23): 6707-6717, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36278818

ABSTRACT

A new generation of bio-inks that are soft, viscous enough, stable in cell culture, and printable at low printing pressures is required in the current state of 3D bioprinting technology. Hydrogels can meet these features and can mimic the microenvironment of soft tissues easily. Hydrocolloids are a group of hydrogels which have a suitable gelling capacity and rheological properties. According to the literature, polysaccharide-based hydrocolloids are used in the food industry, wound healing technologies, and tissue engineering. Quince seed hydrocolloids (QSHs), which consist of mostly glucuronoxylan, can easily be obtained from quince seeds by water extraction. In this study, the use of a QSH as a bio-ink was investigated. The suitability of QSH for the printing process was assessed by rheological, uniformity and pore factor analyses. Appropriate printing parameters were determined and the characterization of the bioprinted QSHs was performed by SEM analysis, water uptake capacity measurement, and protein adsorption assay. The bioprinted QSHs had excellent water uptake capacity and showed suitable protein adsorption behaviour. Analyses of the biocompatibility and cellular viability of bioprinted QSHs were conducted using NIH-3T3 fibroblast cells and the results were found to be high during short and long-term cell culture periods. It was proved that QSH is a highly promising bio-ink for 3D bioprinting and further tissue engineering applications.


Subject(s)
Bioprinting , Bioprinting/methods , Ink , Hydrogels , Colloids , Water
8.
Int J Biol Macromol ; 180: 729-738, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33757854

ABSTRACT

Natural gums and mucilages from plant-derived polysaccharides are potential candidates for a tissue-engineering scaffold by their ability of gelation and biocompatibility. Herein, we utilized Glucuronoxylan-based quince seed hydrogel (QSH) as a scaffold for tissue engineering applications. Optimization of QSH gelation was conducted by varying QSH and crosslinker glutaraldehyde (GTA) concentrations. Structural characterization of QSH was done by Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, morphological and mechanical investigation of QSH was performed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The protein adsorption test revealed the suitability of QSH for cell attachment. Biocompatibility of QSH was confirmed by culturing NIH-3T3 mouse fibroblast cells on it. Cell viability and proliferation results revealed that optimum parameters for cell viability were 2 mg mL-1 of QSH and 0.03 M GTA. SEM and DAPI staining results indicated the formation of spheroids with a diameter of approximately 300 µm. Furthermore, formation of extracellular matrix (ECM) microenvironment was confirmed with the Collagen Type-I staining. Here, it was demonstrated that the fabricated QSH is a promising scaffold for 3D cell culture and tissue engineering applications provided by its highly porous structure, remarkable swelling capacity and high biocompatibility.


Subject(s)
Hydrogels/chemistry , Rosaceae/chemistry , Seeds/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Xylans/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cell Survival/drug effects , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Hydrogels/metabolism , Mice , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Fluorescence , NIH 3T3 Cells , Porosity , Spectroscopy, Fourier Transform Infrared , Xylans/metabolism
9.
ACS Appl Bio Mater ; 4(2): 1794-1802, 2021 02 15.
Article in English | MEDLINE | ID: mdl-35014525

ABSTRACT

Tunable and reproducible size with high circularity is an important limitation to obtain three-dimensional (3D) cellular structures and spheroids in scaffold free tissue engineering approaches. Here, we present a facile methodology based on magnetic levitation (MagLev) to fabricate 3D cellular structures rapidly and easily in high-volume and low magnetic field. In this study, 3D cellular structures were fabricated using magnetic levitation directed assembly where cells are suspended and self-assembled by contactless magnetic manipulation in the presence of a paramagnetic agent. The effect of cell seeding density, culture time, and paramagnetic agent concentration on the formation of 3D cellular structures was evaluated for NIH/3T3 mouse fibroblast cells. In addition, magnetic levitation guided cellular assembly and 3D tumor spheroid formation was examined for five different cancer cell lines: MCF7 (human epithelial breast adenocarcinoma), MDA-MB-231 (human epithelial breast adenocarcinoma), SH-SY5Y (human bone-marrow neuroblastoma), PC-12 (rat adrenal gland pheochromocytoma), and HeLa (human epithelial cervix adenocarcinoma). Moreover, formation of a 3D coculture model was successfully observed by using MDA-MB-231 dsRED and MDA-MB-231 GFP cells. Taken together, these results indicate that the developed MagLev setup provides an easy and efficient way to fabricate 3D cellular structures and may be a feasible alternative to conventional methodologies for cellular/multicellular studies.


Subject(s)
Biocompatible Materials/chemistry , Coculture Techniques , Imaging, Three-Dimensional , Spheroids, Cellular/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cell Line, Tumor , Humans , Magnetic Fields , Materials Testing , Particle Size , Rats
10.
Analyst ; 145(17): 5816-5825, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32648883

ABSTRACT

This work describes development of smartphone-assisted magnetic levitation assay for Point-of-Care (PoC) applications. Magnetic levitation is a technique that detects and separates particles based on their density differences in a magnetic field. Observation of the levitated micro-particles is mainly performed by light microscope or additional optical components, which mostly limits applicability of the magnetic levitation technique for PoC diagnostics. In this paper, we demonstrated the capability of the smartphone assisted-magnetic levitation platform for Hepatitis C (HCV) detection assay. This method utilizes microsensor beads (MS beads) that are functionalized with anti-HCV NS3 antibody. First, the magnetic levitation platform was optimized via density marker polyethylene beads (DMB); then HCV NS3 protein was successfully detected based on levitation height differences of MS beads caused by density changes. The capability of the magnetic levitation platform for HCV detection was determined as almost 10-fold sensitive compared to conventional techniques such as enzyme-linked immunosorbent assay (ELISA). The imaging capability and resolution of the setup was improved over previously used configurations, and the developed platform enabled visualization of micro-scale objects only by smartphone assistance. This method requires no power, it is an easy-to-use and cost effective, therefore it could be easily adaptable to varied sensing assays as PoC tool.

11.
Int J Biol Macromol ; 139: 1054-1062, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31404597

ABSTRACT

Electrospun collagen is commonly used as a scaffold in tissue engineering applications since it mimics the content and morphology of native extracellular matrix (ECM) well. This report describes "toxic solvent free" fabrication of electrospun hybrid scaffold consisting of Collagen (Col) and Poly(l-lactide-co-ε-caprolactone) (PLLCL) for three-dimensional (3D) cell culture. Biomimetic hybrid scaffold was fabricated via co-spinning approach where simultaneous electrospinning of PLLCL and Collagen was mediated by polymer sacrificing agent Polyvinylpyrrolidone (PVP). Acidified aqueous solution of PVP was used to solubilize collagen without using toxic solvents for electrospinning, and then PVP was readily removed by rinsing in water. Mechanical characterizations, protein adsorption, as well as biodegradation analysis have been conducted to investigate feasibility of biomimetic hybrid scaffold for 3D cell culture applications. Electrospun biomimetic hybrid scaffold, which has 3D-network structure with 300-450 nm fiber diameters, was found to be maximizing cell adhesion through assisting NIH 3T3 mouse fibroblast cells. 3D cell culture studies confirmed that presence of collagen in biomimetic hybrid scaffold have created a major impact on cell proliferation compared to conventional 2D systems on long-term, also cell viability increased with the increasing amount of collagen.


Subject(s)
Biomimetic Materials/chemistry , Collagen/chemistry , Electricity , Polyesters/chemistry , Tissue Scaffolds/chemistry , Adsorption , Animals , Biomimetic Materials/metabolism , Biomimetic Materials/toxicity , Cell Survival/drug effects , Extracellular Matrix/metabolism , Mechanical Phenomena , Mice , NIH 3T3 Cells , Polyesters/metabolism , Polyesters/toxicity , Serum Albumin, Bovine/chemistry
12.
Biomater Sci ; 6(7): 1996, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29901665

ABSTRACT

Correction for 'Scaffold-free three-dimensional cell culturing using magnetic levitation' by Esra Türker et al., Biomater. Sci., 2018, DOI: 10.1039/c8bm00122g.

13.
Biomater Sci ; 6(7): 1745-1753, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29700506

ABSTRACT

Three-dimensional (3D) cell culture has emerged as a pioneering methodology and is increasingly utilized for tissue engineering, 3D bioprinting, cancer model studies and drug development studies. The 3D cell culture methodology provides artificial and functional cellular constructs serving as a modular playground prior to animal model studies, which saves substantial efforts, time and experimental costs. The major drawback of current 3D cell culture methods is their dependency on biocompatible scaffolds, which often require tedious syntheses and fabrication steps. Herein, we report an easy-to-use methodology for the formation of scaffold-free 3D cell culture and cellular assembly via magnetic levitation in the presence of paramagnetic agents. To paramagnetize the cell culture environment, three different Gadolinium(iii) chelates were utilized, which led to levitation and assembly of cells at a certain levitation height. The assembly and close interaction of cells at the levitation height where the magnetic force was equilibrated with gravitational force triggered the formation of complex 3D cellular structures. It was shown that Gd(iii) chelates provided an optimal levitation that induced intercellular interactions in scaffold-free format without compromising cell viability. NIH 3T3 mouse fibroblasts and HCC827 non-small-cell lung cancer cells were evaluated via the magnetic levitation system, and the formation of 3D cell culture models was validated for both cell lines. Hereby, the developed magnetic levitation system holds promises for complex cellular assemblies and 3D cell culture studies.


Subject(s)
Cell Culture Techniques/instrumentation , Epithelial Cells/drug effects , Gadolinium DTPA/pharmacology , Heterocyclic Compounds/pharmacology , Organometallic Compounds/pharmacology , Tissue Engineering/methods , Animals , Cell Line, Tumor , Cell Survival/drug effects , Epithelial Cells/cytology , Epithelial Cells/physiology , Gadolinium DTPA/chemistry , Gravitation , Heterocyclic Compounds/chemistry , Humans , Magnetic Fields , Magnets , Mice , NIH 3T3 Cells , Organometallic Compounds/chemistry
14.
ACS Biomater Sci Eng ; 4(3): 787-799, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-33418764

ABSTRACT

The magnetic levitation technique has been utilized to orientate and manipulate objects both in two dimensions (2D) and three dimensions (3D) to form complex structures by combining various types of materials. Magnetic manipulation holds great promise for several applications such as self-assembly of soft substances and biological building blocks, manipulated tissue engineering, as well as cell or biological molecule sorting for diagnostic purposes. Recent studies are proving the potential of magnetic levitation as an emerging tool in biotechnology. This review outlines the advances of newly developing magnetic levitation technology on biological applications in aqueous environment from the biotechnology perspective.

15.
Biofabrication ; 8(1): 014103, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26930133

ABSTRACT

Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research.


Subject(s)
Bioartificial Organs/trends , Biocompatible Materials/chemical synthesis , Biomimetic Materials/chemical synthesis , Organ Culture Techniques/trends , Printing, Three-Dimensional/trends , Tissue Engineering/trends , Animals , Extracellular Matrix/chemistry , Forecasting , Humans , Models, Animal
16.
Proc Natl Acad Sci U S A ; 112(28): E3661-8, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124131

ABSTRACT

Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.


Subject(s)
Magnetics , Single-Cell Analysis , Anti-Infective Agents/pharmacology , Bacteria/cytology , Bacteria/drug effects , Cell Line, Tumor , Culture Media , Erythrocytes/cytology , Humans , Leukocytes/cytology , Models, Theoretical , Yeasts/cytology , Yeasts/drug effects
17.
Analyst ; 138(7): 2007-12, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23423263

ABSTRACT

The hERG (human ether-à-go-go-related gene) potassium channel has been extensively studied by both academia and industry because of its relation to inherited or drug-induced long QT syndrome (LQTS). Unpredicted hERG and drug interaction affecting channel activity is of main concern for drug discovery. Although there are several methods to test hERG and drug interaction, it is still necessary to develop some efficient and economic ways to probe hERG and drug interactions. To contribute this aim, we have developed a biomimetic lipid membrane platform into which the hERG channel can be folded. Expression and integration of the hERG channel was achieved using a cell-free (CF) expression system. The folding of hERG in the biomimetic membrane system was investigated using Surface Plasmon Enhanced Fluorescence Spectroscopy (SPFS) and Imaging Surface Plasmon Resonance (iSPR). In addition, the hERG channel folded into our biomimetic membrane platform was used for probing the channel and drug interactions through fluorescence polarization (FP) assay. Our results suggest that the biomimetic system employed is capable of detecting the interaction between hERG and different channel blockers at varied concentrations. We believe that our current approach could be applied to other membrane proteins for drug screening or other protein-related interactions.


Subject(s)
Biomimetics , Drug Evaluation, Preclinical/methods , Ether-A-Go-Go Potassium Channels/metabolism , Drug Interactions , ERG1 Potassium Channel , Fluorescence Polarization , Humans , Membrane Lipids , Membranes, Artificial , Surface Plasmon Resonance
18.
Colloids Surf B Biointerfaces ; 103: 510-6, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23261574

ABSTRACT

A facile method for assembly of biomimetic membranes serving as a platform for expression and insertion of membrane proteins is described. The membrane architecture was constructed in three steps: (i) assembly/printing of α-laminin peptide (P19) spacer on gold to separate solid support from the membrane architecture; (ii) covalent coupling of different lipid anchors to the P19 layer to serve as stabilizers of the inner leaflet during bilayer formation; (iii) lipid vesicle spreading to form a complete bilayer. Two different lipid membrane systems were examined and two different P19 architectures prepared by either self-assembly or µ-contact printing were tested and characterized using contact angle (CA) goniometry, surface plasmon resonance (SPR) spectroscopy and imaging surface plasmon resonance (iSPR). It is shown that surface coverage of cushion layer is significantly improved by µ-contact printing thereby facilitating bilayer formation as compared to self-assembly. To validate applicability of proposed methodology, incorporation of Cytochrome bo(3) ubiquinol oxidase (Cyt-bo(3)) into biomimetic membrane was performed by in vitro expression technique which was further monitored by surface plasmon enhanced fluorescence spectroscopy (SPFS). The results showed that solid supported planar membranes, tethered by α-laminin peptide cushion layer, provide an attractive environment for membrane protein insertion and characterization.


Subject(s)
Biomimetic Materials/chemical synthesis , Biomimetics/methods , Membranes, Artificial , Laminin/chemistry , Lipid Bilayers/chemistry , Peptides/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Spectrometry, Fluorescence , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...