Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(49): 34524-34533, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38024974

ABSTRACT

In this study, ZnS capped Cu-In-S (ZCIS) quantum dots doped with Mn ions are synthesized by a thermal injection method, with luminescence covering almost the entire visible area. The large Stokes shift effectively inhibits the self-absorption effect under luminescence, and the quantum yield of ZCIS quantum dots increased from 38% to 50% after ZnS capping and further to 69% after doping with Mn. First, red-, yellow-, and blue-emitting quantum dots were synthesized and then, polychromatic ensembles were obtained by mixing the trichromatic quantum dots in a different ratio. Using the home-built inkjet printer, multilayered and multicolor mixed patterns were obtained for information pattern storage and multilayer pattern recognition and reading.

2.
Nanoscale ; 15(17): 7991-8005, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37067249

ABSTRACT

Extracellular vesicles (EVs) show potential as a therapeutic tool for peripheral nerve injury (PNI), promoting neurological regeneration. However, there are limited data on the in vivo spatio-temporal trafficking and biodistribution of EVs. In this study, we introduce a new non-invasive near-infrared fluorescence imaging strategy based on glucose-conjugated quantum dot (QDs-Glu) labeling to target and track EVs in a sciatic nerve injury rat model in real-time. Our results demonstrate that the injected EVs migrated from the uninjured site to the injured site of the nerve, with an increase in fluorescence signals detected from 4 to 7 days post-injection, indicating the release of contents from the EVs with therapeutic effects. Immunofluorescence and behavioral tests revealed that the EV therapy promoted nerve regeneration and functional recovery at 28 days post-injection. We also found a relationship between functional recovery and the NIR-II fluorescence intensity change pattern, providing novel evidence for the therapeutic effects of EV therapy using real-time NIR-II imaging at the live animal level. This approach initiates a new path for monitoring EVs in treating PNI under in vivo NIR-II imaging, enhancing our understanding of the efficacy of EV therapy on peripheral nerve regeneration and its mechanisms.


Subject(s)
Extracellular Vesicles , Peripheral Nerve Injuries , Rats , Animals , Tissue Distribution , Extracellular Vesicles/metabolism , Peripheral Nerve Injuries/diagnostic imaging , Peripheral Nerve Injuries/therapy , Optical Imaging , Nerve Regeneration
3.
Chemphyschem ; 23(24): e202200564, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35972025

ABSTRACT

Colloidal stability of silver nanoparticles is the critical parameter while designing colloidal colorimetric biosensors. Here, we examined colloidal stability of 11-mercaptoundecanoate-capped quasi-spherical silver nanoparticles and silver nanoplates in 0.02 M phosphate buffers with pH 8.0 containing Li+ , Na+ , K+ , or Cs+ cations. While quasi-spherical nanoparticles demonstrate a good colloidal stability in the presence of all studied cations, nanoplates aggregate in the presence of Na-phosphate buffer. The mechanism of aggregation consists in the ion-specific nanoparticle-cation bridging interaction, which is sensitive to the nanoparticle surface curvature. Increased apparent dissociation constant of carboxyl groups on the zero-curvature nanoplates' surface enhances bridging interactions and makes nanoplates colloidally unstable. Bridging interactions can be eliminated by using mixed bimolecular 11-mercaptoundecanoate-11-mercaptoundecanol surface ligand layer. Silver nanoplates with mixed ligand layer show an enhanced colloidal stability at a standard carbodiimide bioconjugation protocol.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Alkalies , Ligands , Cations/chemistry , Sodium/chemistry , Sulfhydryl Compounds , Phosphates
4.
Nanomaterials (Basel) ; 12(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35808125

ABSTRACT

In this paper, hydrophobic luminescent CdSe quantum dots are successfully dispersed in a mixture of styrene and methyl methacrylate through the oleic to methacrylic acid ligand exchange. Further in situ solution polymerization of the quantum dots in a mixture of styrene and methyl methacrylate followed by electrospinning allowed us to prepare luminescence hybrid styrene-co-methyl methacrylate fibers embedded with quantum dots. CdSe@P(S+MMA) hybrid fibers with 27% quantum yield showed excellent moisture, heat and salt resistance with a photoluminescence output below 120 °C. When dry heated, the hybrid fibers of the fluorescence signals decreased with temperature to 79%, 40%, 28%, 20% and 13% at 120 °C, 140 °C, 160 °C, 180 °C and 200 °C, respectively, due the to the chemical degradation of CdSe QDs. Such hybrid fibers show the potential to manufacture wearable moisture- and heat-sensing protective clothing in a 120-200 °C range due to the thermal-induced quenching of quantum dot photoluminescence.

5.
J Phys Chem Lett ; 13(22): 4912-4917, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35634986

ABSTRACT

The ζ-potential of a colloidal quantum dot (QD) in solution has a strong impact on its photoluminescence emission quantum yield as well as the population lifetime. In this study we show that varying the surface charged groups on CdSe/ZnS QDs allows one to tune the ζ-potential and, with it, to control the quantum yield of emission as well as the recombination dynamics. We infer that the net charge density within the slipping plane around the QD in the solution strongly affects the nonradiative recombination processes, depending on the surface charge sign and value. For zwitterionic surface groups it is possible to tune the ζ-potential and the quantum yield by pH. As a general trend, QDs with zwitterionic surface groups produce a low (absolute) ζ-potential value and exhibit the highest quantum yield. Our results pave the way to, for example, future intracellular, time-resolved pH sensing applications with similar systems.

6.
ACS Omega ; 6(29): 18939-18947, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337233

ABSTRACT

High-efficiency photoluminescence quaternary hexagon Zn-Cu-In-S (ZCIS) nanoplatelets (NPls) have been synthesized by a two-step cation exchange method, which starts with the In2S3 NPls followed by the addition of Cu and Zn. It is the first time that In2S3 NPls are used as templates to synthesize ZCIS NPls. In this paper, the reaction temperature of In2S3 is essential for the formation of NPls. The photoluminescence wavelength of NPls can be tuned by adjusting the temperature of Cu addition. To enhance the stability of the resulting NPls and to improve their optical properties, we introduced Zn2+ and obtained ZCIS NPls by cation exchange on the surface. It is worth noting that the obtained ZCIS NPls show a shorter fluorescence lifetime than other ternary copper sulfide-based NPls. This work provides a new way to synthesize high-efficiency, nontoxic, and no byproduct ZCIS NPls.

7.
Nanoscale ; 13(12): 6266-6267, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33734269

ABSTRACT

Correction for 'Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties' by Sabrine Ayari et al., Nanoscale, 2020, 12, 14448-14458, DOI: .

8.
Nanotechnology ; 31(43): 435102, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-32663818

ABSTRACT

Since CdSe nanoplatelets were reported to have a ten-fold higher two-photon (2P) absorption coefficient as compared to quantum dots, we examined their applicability for cell labeling and 2P imaging. CdSSe/ZnCdS core-shell nanoplatelets and CdSe/ZnS quantum dots, both emitting at 585 nm were encapsulated with an amphiphilic zwitterionic polymer having slightly positive zeta potential. As measured with flow cytometry, glioma C6 cells demonstrated equally efficient uptake of nanoplatelets and quantum dots, despite the different sizes of these two types of nanoparticles. 2P fluorescence microscopy revealed ca. two orders of magnitude higher fluorescence response from nanoplatelets thus offering a chance to use them as highly efficient 2P fluorescent labels in biomedicine.


Subject(s)
Cadmium Compounds/chemistry , Nanostructures/chemistry , Quantum Dots/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Cell Line, Tumor , Glioma/diagnostic imaging , Humans , Male , Microscopy, Fluorescence , Optical Imaging
9.
Nanoscale ; 12(27): 14448-14458, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32618327

ABSTRACT

We present a theoretical study combined with experimental validations demonstrating that CdSe nanoplatelets are a model system to investigate the tunability of trions and excitons in laterally finite 2D semiconductors. Our results show that the trion binding energy can be tuned from 36 meV to 18 meV with the lateral size and decreasing aspect ratio, while the oscillator strength ratio of trions to excitons decreases. In contrast to conventional quantum dots, the trion oscillator strength in a nanoplatelet at low temperature is smaller than that of the exciton. The trion and exciton Bohr radii become lateral size tunable, e.g. from ∼3.5 to 4.8 nm for the trion. We show that dielectric screening has strong impact on these properties. By theoretical modeling of transition energies, binding energies and oscillator strength of trions and excitons and comparison with experimental findings, we demonstrate that these properties are lateral size and aspect ratio tunable and can be engineered by dielectric confinement, allowing to suppress e.g. detrimental trion emission in devices. Our results strongly impact further in-depth studies, as the demonstrated lateral size tunable trion and exciton manifold is expected to influence properties like gain mechanisms, lasing, quantum efficiency and transport even at room temperature due to the high and tunable trion binding energies.

10.
Nanotechnology ; 31(43): 435708, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-32634786

ABSTRACT

Semiconductor CdSe/CdS core-shell nanoplatelets exhibit narrow and intense absorption and photoluminescence spectra in the visible range, which makes them suitable for numerous applications in optoelectronics. Of particular interest is the preparation and optical characterization of thin films with an accurately controlled amount of nanoplatelets. Here we report on the use of spectroscopic ellipsometry for investigating the optical properties of ultrathin films composed of a single layer of negatively charged CdSe/CdS core-shell nanoplatelets prepared by the electrostatic layer-by-layer deposition on SiO2/Si substrates. Combining the ellipsometric spectra with atomic force microscopy measurements, we were able to infer the nanoplatelet film extinction spectra which was found to exhibit the two characteristic exciton peaks albeit blueshifted relative to the colloidal nanoplatelets.

11.
Nanoscale ; 11(25): 12230-12241, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31204756

ABSTRACT

CdSe nanoplatelets can be synthesized with different lateral sizes; very small nanoplatelets have almost quantum dot like features (almost discrete exciton states), while very large ones are expected to have properties of colloidal quantum wells (exciton continuum). However, nanoplatelets can be in an intermediate confinement regime with a rich substructure of excitons, which is neither quantum dot like nor an ideal 2D exciton. In this manuscript, we discuss the experimental transition energies and relaxation dynamics of exciton states in CdSe platelets with varying lateral dimensions and compare them with a microscopic theoretical model including exciton-phonon scattering. The model takes special care of the interplay of confinement and Coulomb coupling in the intermediate regime showing strong changes with respect to simple weak or strong confinement models by solving the full four dimensional lateral factorization free exciton wavefunction. Depending on the platelet size broad resonances previously attributed to just ground and excited states are actually composed of a rich substructure of several exciton states in their temporal dynamics. We show that these factorization free exciton states can explain the spectral features observed in photoluminescence experiments. Furthermore we demonstrate that the interplay of exciton bright and dark states provides principle insights into the overall temporal relaxation dynamics, and allows tuning of the exciton cooling via lateral platelet size. Our results and theoretical approach are directly relevant for understanding e.g. the size tuneability of lasing, excitonic cooling dynamics or light harvesting applications in these and similar 2D systems of finite lateral size.

12.
Nanotechnology ; 30(39): 395603, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31212270

ABSTRACT

Gradient core-shell Zn-Cu-In-S/ZnS quantum dots (QDs) of small size and with highly efficient photoluminescence were synthesized via a multi-step high-temperature method involving cation exchange. The procedure starts with the preparation of indium sulfide nanoparticles followed by the addition of Cu and Zn precursors. At this stage, Zn replaces Cu atoms and as a result the concentration of Cu ions in the final QDs is only about 5% of the total In content in a QD. Zn incorporation and the formation of a gradient ZnS shell dramatically increases the photoluminescence quantum yield. Furthermore, the formation of the ZnS shell improves the chemical stability of Cu-In-S QDs, as demonstrated by the preparation of polystyrene-QD composites and labeling of glioma cells. This work provides an effective strategy for obtaining efficient and stable fluorophores free of heavy metals.

13.
Nanoscale ; 11(9): 3958-3967, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30762858

ABSTRACT

In a comparative study we investigate the carrier-phonon coupling in CdSe based core-only and hetero 2D as well as 0D nanoparticles. We demonstrate that the coupling can be strongly tuned by the lateral size of nanoplatelets, while, due to the weak lateral confinement, the transition energies are only altered by tens of meV. Our analysis shows that an increase in the lateral platelet area results in a strong decrease in the phonon coupling to acoustic modes due to deformation potential interaction, yielding an exciton deformation potential of 3.0 eV in line with theory. In contrast, coupling to optical modes tends to increase with the platelet area. This cannot be explained by Fröhlich interaction, which is generally dominant in II-VI materials. We compare CdSe/CdS nanoplatelets with their equivalent, spherical CdSe/CdS nanoparticles. Universally, in both systems the introduction of a CdS shell is shown to result in an increase of the average phonon coupling, mainly related to an increase of the coupling to acoustic modes, while the coupling to optical modes is reduced with increasing CdS layer thickness. The demonstrated size and CdS overgrowth tunability has strong implications for applications like tuning carrier cooling and carrier multiplication - relevant for solar energy harvesting applications. Other implications range from transport in nanosystems e.g. for field effect transistors or dephasing control. Our results open up a new toolbox for the design of photonic materials.

14.
ACS Nano ; 12(9): 9476-9483, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30192515

ABSTRACT

We investigate the impact of shell growth on the carrier dynamics and exciton-phonon coupling in CdSe-CdS core-shell nanoplatelets with varying shell thickness. We observe that the recombination dynamics can be prolonged by more than one order of magnitude, and analyze the results in a global rate model as well as with simulations including strain and excitonic effects. We reveal that type I band alignment in the hetero platelets is maintained at least up to three monolayers of CdS, resulting in approximately constant radiative rates. Hence, observed changes of decay dynamics are not the result of an increasingly different electron and hole exciton wave function delocalization as often assumed, but an increasingly better passivation of nonradiative surface defects by the shell. Based on a global analysis of time-resolved and time-integrated data, we recover and model the temperature dependent quantum yield of these nanostructures and show that CdS shell growth leads to a strong enhancement of the photoluminescence quantum yield. Our results explain, for example, the very high lasing gain observed in CdSe-CdS nanoplatelets due to the type I band alignment that also makes them interesting as solar energy concentrators. Further, we reveal that the exciton-LO-phonon coupling is strongly tunable by the CdS shell thickness, enabling emission line width and coherence length control.

15.
Nanotechnology ; 29(39): 395604, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-29992908

ABSTRACT

In this paper we report the synthesis of colloidal CdSe/CdS core-shell heteronanoplatelets with epitaxially grown wurtzite (WZ) 1D CdS branches or legs by using cadmium diethyldithiocarbamate as a single-source precursor. The growth of WZ branches was achieved by exploiting zinc blende-wurtzite polytypism of cadmium chalcogenides induced by oleylamine. Synthesized 'nanospiders' exhibit enhanced absorption in the UV-blue region and narrow and relatively intense red photoluminescence depending on the amount of CdS in the heteronanostructure.

16.
Nano Lett ; 17(10): 6321-6329, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28898091

ABSTRACT

We show that two-photon absorption (TPA) is highly anisotropic in CdSe nanoplatelets, thus promoting them as a new class of directional two-photon absorbers with large cross sections. Comparing two-dimensional k-space spectroscopic measurements of the one-photon and two-photon excitation of an oriented monolayer of platelets, it is revealed that TPA into the continuum is a directional phenomenon. This is in contrast to one-photon absorption. The observed directional TPA is shown to be related to fundamental band anisotropies of zincblende CdSe and the ultrastrong anisotropic confinement. We recover the internal transition dipole distribution and find that this directionality arises from the intrinsic directionality of the underlying Bloch and envelope functions of the states involved. We note that the photoemission from the CdSe platelets is highly anisotropic following either one- or two-photon excitation. Given the directionality and high TPA cross-section of these platelets, they may, for example, find employment as efficient logic AND elements in integrated photonic devices, or directional photon converters.

17.
Nat Nanotechnol ; 12(12): 1155-1160, 2017 12.
Article in English | MEDLINE | ID: mdl-28920964

ABSTRACT

Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

18.
Nano Lett ; 16(10): 6576-6583, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27646777

ABSTRACT

We present a study of the application potential of CdSe nanoplatelets (NPLs), a model system for colloidal 2D materials, as field-controlled emitters. We demonstrate that their emission can be changed by 28% upon application of electrical fields up to 175 kV/cm, a very high modulation depth for field-controlled nanoemitters. From our experimental results we estimate the exciton binding energy in 5.5 monolayer CdSe nanoplatelets to be EB = 170 meV; hence CdSe NPLs exhibit highly robust excitons which are stable even at room temperature. This opens up the possibility to tune the emission and recombination dynamics efficiently by external fields. Our analysis further allows a quantitative discrimination of spectral changes of the emission energy and changes in PL intensity related to broadening of the emission line width as well as changes in the intrinsic radiative rates which are directly connected to the measured changes in the PL decay dynamics. With the developed field-dependent population model treating all occurring field-dependent effects in a global analysis, we are able to quantify, e.g., the ground state exciton transition dipole moment (3.0 × 10-29 Cm) and its polarizability, which determine the radiative rate, as well as the (static) exciton polarizability (8.6 × 10-8 eV cm2/kV2), all in good agreement with theory. Our results show that an efficient field control over the exciton recombination dynamics, emission line width, and emission energy in these nanoparticles is feasible and opens up application potential as field-controlled emitters.

19.
Phys Rev Lett ; 116(11): 116802, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035317

ABSTRACT

We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

20.
Clin J Am Soc Nephrol ; 11(4): 616-25, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26936946

ABSTRACT

BACKGROUND AND OBJECTIVES: Intradialytic hypoxemia has been recognized for decades, but its associations with outcomes have not yet been assessed in a large patient cohort. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Our retrospective cohort study was conducted between January of 2012 and January of 2015. We recorded blood oxygen saturation every minute during hemodialysis in patients with arteriovenous access. A 6-month baseline period with at least 10 treatments with oxygen saturation measurements preceded a 12-month follow-up. Patients were stratified by the presence or absence of prolonged intradialytic hypoxemia defined as oxygen saturation <90% for at least one third of the treatment time. Demographic, laboratory, and treatment data and hospitalization and mortality rates were compared between the groups. Multivariate Cox regression analysis was used to assess baseline predictors of all-cause mortality during follow-up. RESULTS: In total, 100 (10%) of 983 patients had prolonged intradialytic hypoxemia. These patients were older (+3.6 years; 95% confidence interval, 0.8 to 6.3), had longer dialysis vintage (+1.2 years; 95% confidence interval, 0.3 to 2.1), and had higher prevalence of congestive heart failure (+10.8%; 95% confidence interval, 1.6 to 20.7) and chronic obstructive pulmonary disease (+13%; 95% confidence interval, 5 to 21.2). They also resembled an inflammatory phenotype, with lower serum albumin levels (-0.1 g/dl; 95% confidence interval, -0.2 to 0) and higher neutrophil-to-lymphocyte ratios (+1; 95% confidence interval, 0.5 to 1.6). They had lower hemoglobin levels (-0.2 g/dl; 95% confidence interval, -0.4 to 0) and required more erythropoietin (+1374 U per hemodialysis treatment; 95% confidence interval, 343 to 2405). During follow-up, all-cause hospitalization (1113 hospitalizations; univariate hazard ratio, 1.46; 95% confidence interval, 1.22 to 1.73) and mortality (89 deaths; adjusted hazard ratio, 1.98; 95% confidence interval, 1.14 to 3.43) were higher in patients with prolonged intradialytic hypoxemia. CONCLUSIONS: Prolonged intradialytic hypoxemia was associated with laboratory indicators of inflammation, higher erythropoietin requirements, and higher all-cause hospitalization and mortality.


Subject(s)
Hypoxia/epidemiology , Renal Dialysis , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL