Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurourol Urodyn ; 30(8): 1666-74, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21717503

ABSTRACT

AIMS: During postnatal development large amplitude spontaneous activity of the neonatal rat bladder changes to a low amplitude adult pattern of activity that leads to improved storage function. Previously, we have shown that spontaneous activity in neonatal rat bladder strips is inhibited by activation of the nitric oxide (NO)-cGMP signaling pathway. In the present experiments we determined if this inhibitory pathway is altered during postnatal development or spinal cord injury. METHODS: Baseline tone and amplitude and frequency of spontaneous contractions were measured in bladder strips from male or female neonatal (days 10-21), juvenile (days 24-39) and adult female spinal cord intact or chronic spinal cord injured Sprague-Dawley rats. RESULTS: The inhibitory effects of an NO donor (SNAP) and a PDE-5 inhibitor (zaprinast) on spontaneous activity of bladder strips decreased during postnatal development, while an inhibitory effect of 8-bromo-cGMP, which was blocked by a protein kinase G inhibitor, was detected at all ages tested. However, the effect of NO-cGMP signaling to reduce baseline tone emerged during postnatal development. The inhibition induced by the NO donor was blocked by an inhibitor of soluble guanylyl cyclase (sGC). Chronic spinal cord injury (cSCI), which causes the re-emergence of a neonatal-like pattern of spontaneous activity, did not restore sensitivity to NO-mediated inhibition in adult rat bladders. CONCLUSIONS: These data indicate that while cGMP signaling inhibits activity in young and adult bladders as well as after cSCI, there is a developmental decrease in the sensitivity of bladder to NO-mediated inhibition.


Subject(s)
Nitric Oxide/metabolism , Signal Transduction , Spinal Cord Injuries/metabolism , Urinary Bladder/metabolism , Urodynamics , Age Factors , Animals , Animals, Newborn , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Female , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/metabolism , Male , Nitric Oxide Donors/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/drug effects , Soluble Guanylyl Cyclase , Spinal Cord Injuries/physiopathology , Urinary Bladder/drug effects , Urinary Bladder/growth & development , Urinary Bladder/physiopathology , Urodynamics/drug effects
2.
Neurourol Urodyn ; 30(1): 144-50, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21046653

ABSTRACT

AIMS: To investigate the distribution of beta-3 adrenergic receptors (ß(3)ARs) in the rat bladder and to examine the contribution of urothelial ß(3)ARs to agonist-induced suppression of bladder reflexes and relaxation of smooth muscle. METHODS: Bladder tissue was collected from 8- to 10-month old female SD rats. In some samples, the urothelium was surgically separated from the smooth muscle. The expression and localization of ßAR mRNA and ß(3)AR protein were determined using RT-PCR and immunohistochemistry. Contractile responses to the specific ß(3)AR agonists TAK-677 and BRL37344 were measured in bladder strips with or without the urothelium. The contribution of urothelial ß(3)ARs to the micturition reflex was assessed in continuous cystometry in urethane anesthetized rats using intravesical delivery of ß(3)AR agonists. RESULTS: RT-PCR detected mRNA of all ßARs in urothelium and smooth muscle. Immunostaining detected ß(3)ARs throughout the urothelium, in the smooth muscle, myofibroblast-like cells, and in the peripheral nerves. Ovariectomy did not change the distribution of ß(3)ARs in any bladder structure. Intravesical administration of TAK-677 and BRL37344 (1-5 × 10(-4) M) decreased voiding frequency and amplitude of bladder contractions. In bladder strips in vitro both ß(3)AR agonists (10(-12) to 10(-4) M) relaxed the smooth muscle in a concentration-dependent manner to the same extent in strips with and without the urothelium. CONCLUSIONS: In addition to their presence in bladder smooth muscle, ß(3)ARs are present in the urothelium where their activation may alter reflex voiding via release of factor(s) that act on non-myocyte structures including the afferent and/or efferent nerves to influence bladder contractility.


Subject(s)
Muscle, Smooth/metabolism , Receptors, Adrenergic, beta-3/metabolism , Urinary Bladder/metabolism , Urothelium/metabolism , Acetates/pharmacology , Adrenergic beta-Agonists/pharmacology , Animals , Ethanolamines/pharmacology , Female , Immunohistochemistry , Indoles/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta/metabolism , Receptors, Adrenergic, beta-3/genetics , Reverse Transcriptase Polymerase Chain Reaction , Urinary Bladder/drug effects , Urinary Bladder/physiology , Urination/drug effects , Urothelium/drug effects
3.
Exp Neurol ; 219(2): 562-73, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19631644

ABSTRACT

Neurokinins (NK) released from terminals of dorsal root ganglion (DRG) neurons may control firing of these neurons by an autofeedback mechanism. In this study we used patch clamp recording techniques to determine if NKs alter excitability of rat L4-S3 DRG neurons by modulating K(+) currents. In capsaicin (CAPS)-responsive phasic neurons substance P (SP) lowered action potential (AP) threshold and increased the number of APs elicited by depolarizing current pulses. SP and a selective NK(2) agonist, [betaAla(8)]-neurokinin A (4-10) also inhibited low threshold inactivating K(+) currents isolated by blocking non-inactivating currents with a combination of high TEA, (-) verapamil and nifedipine. Currents recorded under these conditions were heteropodatoxin-sensitive (Kv4 blocker) and alpha-dendrotoxin-insensitive (Kv1.1 and Kv1.2 blocker). SP and NKA elicited a >10 mV positive shift of the voltage dependence of activation of the low threshold currents. This effect was absent in CAPS-unresponsive neurons. The effect of SP or NKA on K(+) currents in CAPS-responsive phasic neurons was fully reversed by an NK(2) receptor antagonist (MEN10376) but only partially reversed by a PKC inhibitor (bisindolylmaleimide). An NK(1) selective agonist ([Sar(9), Met(11)]-substance P) or direct activation of PKC with phorbol 12,13-dibutyrate, did not change firing in CAPS-responsive neurons, but did inhibit various types of K(+) currents that activated over a wide range of voltages. These data suggest that the excitability of CAPS-responsive phasic afferent neurons is increased by activation of NK(2) receptors and that this is due in part to inhibition and a positive voltage shift in the activation of heteropodatoxin-sensitive Kv4 channels.


Subject(s)
Capsaicin/pharmacology , Ganglia, Spinal/cytology , Neural Inhibition/drug effects , Neurons/drug effects , Potassium Channels/physiology , Sensory System Agents/pharmacology , Tachykinins/pharmacology , Alkanesulfonic Acids/pharmacology , Animals , Biophysics , Cyclohexylamines/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Electric Stimulation/methods , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurons/classification , Patch-Clamp Techniques/methods , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Substance P/pharmacology
4.
Am J Physiol Renal Physiol ; 297(2): F333-40, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19493964

ABSTRACT

Nitric oxide (NO), a neurotransmitter in the lower urinary tract, stimulates soluble guanylyl cyclase (sGC) and in turn cGMP-dependent protein kinase G (PKG) to modulate a number of downstream targets. NO donors reduce bladder hyperactivity in some pathological models but do not affect normal bladder activity in the adult rat. In this study, the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP; 100 microM) decreased the amplitude and frequency of spontaneous and carbachol-enhanced contractions in neonatal rat bladder strips, which are intrinsically hyperactive. This effect was blocked by inhibition of sGC and mimicked by application of a membrane-permeable cGMP analog (8-bromo-cGMP, 100 microM). Inhibition of PKG prevented or reversed the inhibitory effects of 8-bromo-cGMP. A portion of the SNAP-mediated inhibition was also dependent upon PKG; however, a short-lasting, sGC-dependent inhibitory effect of SNAP was still present after PKG inhibition. Inhibition of NO synthase with L-NAME (100 microM) did not change the amplitude or frequency of contractions. However, inhibition of endogenous phosphodiesterase (PDE)-5 with zaprinast (25 microM) reduced the amplitude and frequency of phasic contractions and increased the magnitude of inhibition produced by maximal concentrations of SNAP, suggesting that endogenous PDEs are constitutively active and regulate cGMP production. These results suggest that the NO-cGMP-PKG pathway may be involved in inhibitory control of the neonatal rat bladder.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Muscle Contraction , Muscle, Smooth/enzymology , Nitrergic Neurons/metabolism , Nitric Oxide/metabolism , Signal Transduction , Urinary Bladder/enzymology , Animals , Animals, Newborn , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Dose-Response Relationship, Drug , Female , Guanylate Cyclase/metabolism , In Vitro Techniques , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/innervation , NG-Nitroarginine Methyl Ester/pharmacology , Neural Inhibition , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase/metabolism , Phosphodiesterase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Purinones/pharmacology , Rats , Rats, Sprague-Dawley , S-Nitroso-N-Acetylpenicillamine/pharmacology , Signal Transduction/drug effects , Time Factors , Urinary Bladder/drug effects , Urinary Bladder/innervation
5.
J Pharmacol Exp Ther ; 330(3): 704-17, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19515967

ABSTRACT

Voiding dysfunctions, including increased voiding frequency, urgency, or incontinence, are prevalent in the postmenopausal population. Beta(3)-adrenergic receptor (beta(3)AR) agonists, which relax bladder smooth muscle, are being developed to treat these conditions. We utilized the rat ovariectomy (OVX) model to investigate the effect of ovarian hormone depletion on bladder function and the potential for beta(3)AR agonists to treat bladder hyperactivity in this setting. OVX increased voiding frequency and decreased bladder capacity by approximately 25% in awake rats and induced irregular cystometrograms in urethane-anesthetized rats. Reverse transcription-polymerase chain reaction revealed three betaARs subtypes (beta(1,2,3)) in bladder tissue, and immunostaining indicated beta(3)AR localization in urothelium and detrusor. Receptor expression was not different in OVX and SHAM rats. The beta(3)AR agonist selectivity of BRL37344 [(+/-)-(R(*),R(*))-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid sodium hydrate], TAK-677 [(3-((2R)-(((2R)-(3-chlorophenyl)-2-hydroxyethyl)amino)propyl)-1H-indol-7-yloxy)acetic acid], and FK175 [acetic acid, 2-[[(8S)-8-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl]oxy], ethyl ester, hydrochloride] was confirmed by examining the relative potency for elevation of cAMP in CHOK1 cells overexpressing the various rat betaARs. Intravenous injection of each of the beta(3)AR agonists (0.1-500 microg/kg) in anesthetized rats decreased voiding frequency, bladder pressure, and amplitude of bladder contractions. In bladder strips, beta(3)AR agonists (10(-12)-10(-4) M) decreased baseline tone and reduced spontaneous contractions. BRL37344 (5 mg/kg) and TAK-677 (5 mg/kg) injected intraperitoneally in awake rats decreased voiding frequency by 40 to 70%. These effects were not altered by OVX. The results indicate that OVX-induced bladder dysfunction, including decreased bladder capacity and increased voiding frequency, is not associated with changes in beta(3)AR expression or the bladder inhibitory effects of beta(3)AR agonists. This suggests that beta(3)AR agonists should prove effective for the treatment of overactive bladder symptoms in the postmenopausal population.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Adrenergic beta-Agonists/pharmacology , Ovariectomy , Urinary Bladder, Neurogenic/drug therapy , Adrenergic beta-Agonists/chemical synthesis , Anesthesia , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Female , Humans , Immunohistochemistry , In Vitro Techniques , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta-3/biosynthesis , Urinary Bladder, Neurogenic/physiopathology , Urination/drug effects
6.
J Neurosci ; 28(8): 1977-87, 2008 Feb 20.
Article in English | MEDLINE | ID: mdl-18287514

ABSTRACT

Antimuscarinic drugs affect bladder sensory symptoms such as urgency and frequency, presumably by acting on muscarinic acetylcholine receptors (mAChRs) located in bladder sensory pathways including primary afferent nerves and urothelium. However, the expression and the function of these receptors are not well understood. This study investigated the role of mAChRs in bladder sensory pathways in vivo in urethane anesthetized rats. Intravesical administration of the mAChR agonist oxotremorine methiodide (OxoM) elicited concentration-dependent excitatory and inhibitory effects on the frequency of voiding. These effects were blocked by intravesical administration of the mAChR antagonist atropine methyl nitrate (5 microM) and were absent in rats pretreated with capsaicin to desensitize C-fiber afferent nerves. Low concentrations of OxoM (5 microM) decreased voiding frequency by approximately 30%, an effect blunted by inhibiting nitric oxide (NO) synthesis with L-NAME (N(omega)-nitro-L-arginine methyl ester hydrochloride; 5 mg/kg; i.v.). High concentrations of OxoM (40 microM) increased voiding frequency by approximately 45%, an effect blunted by blocking purinergic receptors with PPADS (0.1-1 mM; intravesically). mAChR agonists stimulated release of ATP from cultured urothelial cells. Intravenous administration of OxoM (0.01-5 microg/kg) did not mimic the intravesical effects on voiding frequency. These results suggest that activation of mAChRs located near the luminal surface of the bladder affects voiding functions via mechanisms involving ATP and NO release presumably from the urothelium, that in turn could act on bladder C-fiber afferent nerves to alter their firing properties. These findings suggest that the urothelial-afferent nerve interactions can influence reflex voiding function.


Subject(s)
Neurons, Afferent/metabolism , Receptors, Muscarinic/metabolism , Reflex/physiology , Urinary Bladder/metabolism , Animals , Cholinergic Agents/pharmacology , Female , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons, Afferent/drug effects , Rats , Urinary Bladder/drug effects , Urination/drug effects , Urination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...