Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecology ; 103(3): e3614, 2022 03.
Article in English | MEDLINE | ID: mdl-34921678

ABSTRACT

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Subject(s)
Ecosystem , Pollination , Animals , Bees , Crops, Agricultural , Flowers , Insecta
2.
Ecol Evol ; 10(7): 3189-3199, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273980

ABSTRACT

Concerns over the availability of honeybees (Apis mellifera L.) to meet pollination demands have elicited interest in alternative pollinators to mitigate pressures on the commercial beekeeping industry. The blue orchard bee, Osmia lignaria (Say), is a commercially available native bee that can be employed as a copollinator with, or alternative pollinator to, honeybees in orchards. To date, their successful implementation in agriculture has been limited by poor recovery of bee progeny for use during the next spring. This lack of reproductive success may be tied to an inadequate diversity and abundance of alternative floral resources during the foraging period. Managed, supplementary wildflower plantings may promote O. lignaria reproduction in California almond orchards. Three wildflower plantings were installed and maintained along orchard edges to supplement bee forage. Plantings were seeded with native wildflower species that overlapped with and extended beyond almond bloom. We measured bee visitation to planted wildflowers, bee reproduction, and progeny outcomes across orchard blocks at variable distances from wildflower plantings during 2015 and 2016. Pollen provision composition was also determined to confirm O. lignaria wildflower pollen use. Osmia lignaria were frequently observed visiting wildflower plantings during, and after, almond bloom. Most O. lignaria nesting occurred at orchard edges. The greatest recovery of progeny occurred along the orchard edges having the closest proximity (80 m) to managed wildflower plantings versus edges farther away. After almond bloom, O. lignaria nesting closest to the wildflower plantings collected 72% of their pollen from Phacelia spp., which supplied 96% of the managed floral area. Phacelia spp. pollen collection declined with distance from the plantings, but still reached 17% 800 m into the orchard. This study highlights the importance of landscape context and proximity to supplementary floral resources in promoting the propagation of solitary bees as alternative managed pollinators in commercial agriculture.

3.
Environ Entomol ; 47(2): 364-377, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29471414

ABSTRACT

Pollination services provided by managed bees are essential for California almond (Prunus dulcis Mill.; Rosales: Rosaceae) production. Currently, pollination needs are met by rented or owned Apis mellifera L. (Hymenoptera: Apidae; honey bee) colonies. Excessive demand on a challenged A. mellifera industry to provide strong colonies in early spring has caused sharp increases in rental prices over the past decade, inviting the consideration of alternative pollinators in addition to, or in place of, A. mellifera. Osmia lignaria Say (Hymenoptera: Megachilidae; the blue orchard bee) is an excellent pollinator of fruit and nut trees, but its pollination impacts when used in tandem with A. mellifera have yet to be evaluated in commercial almond orchards. A 2-yr study was conducted in California orchards to compare almond pollination and production using A. mellifera as sole pollinator to an alternative practice of adding O. lignaria as a co-pollinator with A. mellifera. Almond orchard managerial decisions, such as for pesticide use and irrigation intensity, vary between almond growing regions because of local climates. Therefore, both north-central and southern sites of California's San Joaquin Valley are represented. We compared bee visitation, nut set, and nut yield between orchards and between tree rows within orchards. Also, O. lignaria reproductive success was recorded to assure that these bees remained in the orchards as pollinators and to assess the ability to sustain these bees under regional orchard conditions. We demonstrated that augmenting large commercial almond orchards with O. lignaria can significantly increase nut set and sometimes nut yield in both regions evaluated.


Subject(s)
Agriculture/methods , Bees , Nuts/growth & development , Pollination , Prunus dulcis/physiology , Animals , California , Female , Male
4.
J Econ Entomol ; 111(1): 16-25, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29272519

ABSTRACT

Native managed bees can improve crop pollination, but a general framework for evaluating the associated economic costs and benefits has not been developed. We conducted a cost-benefit analysis to assess how managing blue orchard bees (Osmia lignaria Say [Hymenoptera: Megachildae]) alongside honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) can affect profits for almond growers in California. Specifically, we studied how adjusting three strategies can influence profits: (1) number of released O. lignaria bees, (2) density of artificial nest boxes, and (3) number of nest cavities (tubes) per box. We developed an ecological model for the effects of pollinator activity on almond yields, validated the model with published data, and then estimated changes in profits for different management strategies. Our model shows that almond yields increase with O. lignaria foraging density, even where honey bees are already in use. Our cost-benefit analysis shows that profit ranged from -US$1,800 to US$2,800/acre given different combinations of the three strategies. Adding nest boxes had the greatest effect; we predict an increase in profit between low and high nest box density strategies (2.5 and 10 boxes/acre). In fact, the number of released bees and the availability of nest tubes had relatively small effects in the high nest box density strategies. This suggests that growers could improve profits by simply adding more nest boxes with moderate number of tubes in each. Our approach can support grower decisions regarding integrated crop pollination and highlight the importance of a comprehensive ecological economic framework for assessing these decisions.


Subject(s)
Bees/physiology , Crop Production/economics , Pollination , Prunus dulcis/growth & development , Animals , California , Cost-Benefit Analysis , Models, Biological , Species Specificity
5.
Environ Entomol ; 46(3): 559-564, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28379320

ABSTRACT

The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in bloom at the same time, despite this being a concern expressed by growers. We evaluated how wildflower plantings added to orchard borders in a large (512 ha) commercial almond orchard affected honey bee and wild bee visitation to orchard borders and the crop. The study was conducted over two consecutive seasons using three large (0.48 ha) wildflower plantings paired with control orchard borders in a highly simplified agricultural landscape in California. Honey bee (Apis mellifera L.) and wild bee visitation to wildflower plots were at least an order of magnitude higher than to control plots, but increased honey bee visitation to wildflower plots did not lead to any detectable shifts in honey bee visitation to almond flowers in the neighboring orchard. Wild bees were rarely observed visiting almond flowers irrespective of border treatment, indicating a limited short-term potential for augmenting crop pollination using wild bees in highly simplified agricultural landscapes. Although further studies are warranted on bee visitation and crop yield from spatially independent orchards, this study indicates that growers can support bees with alternative forage in almond orchards without risking competition between the wildflower plantings and the crop.


Subject(s)
Agriculture/methods , Bees/physiology , Pollination , Prunus dulcis , Animals , Appetitive Behavior , California , Crops, Agricultural/growth & development , Flowers/growth & development , Prunus dulcis/growth & development , Seasons
6.
PLoS One ; 10(8): e0135688, 2015.
Article in English | MEDLINE | ID: mdl-26274401

ABSTRACT

There is a growing body of empirical evidence showing that wild and managed bees are negatively impacted by various pesticides that are applied in agroecosystems around the world. The lethal and sublethal effects of two widely used fungicides and one adjuvant were assessed in cage studies in California on blue orchard bees, Osmia lignaria, and in cage studies in Utah on alfalfa leafcutting bees, Megachile rotundata. The fungicides tested were Rovral 4F (iprodione) and Pristine (mixture of pyraclostrobin + boscalid), and the adjuvant tested was N-90, a non-ionic wetting agent (90% polyethoxylated nonylphenol) added to certain tank mixtures of fungicides to improve the distribution and contact of sprays to plants. In separate trials, we erected screened cages and released 20 paint-marked females plus 30-50 males per cage to document the behavior of nesting bees under treated and control conditions. For all females in each cage, we recorded pollen-collecting trip times, nest substrate-collecting trip times (i.e., mud for O. lignaria and cut leaf pieces for M. rotundata), cell production rate, and the number of attempts each female made to enter her own or to enter other nest entrances upon returning from a foraging trip. No lethal effects of treatments were observed on adults, nor were there effects on time spent foraging for pollen and nest substrates and on cell production rate. However, Rovral 4F, Pristine, and N-90 disrupted the nest recognition abilities of O. lignaria females. Pristine, N-90, and Pristine + N-90 disrupted nest recognition ability of M. rotundata females. Electroantennogram responses of antennae of O. lignaria females maintained in the laboratory did not differ significantly between the fungicide-exposed and control bees. Our results provide the first empirical evidence that two commonly used fungicides and a non-ionic adjuvant can disrupt nest recognition in two managed solitary bee species.


Subject(s)
Fungicides, Industrial/toxicity , Hymenoptera/drug effects , Hymenoptera/physiology , Nesting Behavior/drug effects , Phenols/toxicity , Wetting Agents/toxicity , Agriculture , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/toxicity , Animals , Biphenyl Compounds/toxicity , California , Carbamates/toxicity , Female , Hydantoins/toxicity , Male , Niacinamide/analogs & derivatives , Niacinamide/toxicity , Pyrazoles/toxicity , Strobilurins , Utah
7.
J Econ Entomol ; 107(6): 2045-54, 2014 12.
Article in English | MEDLINE | ID: mdl-26470068

ABSTRACT

Intensively managed, commercial orchards offer resources for managed solitary bees within agricultural landscapes and provide a means to study bee dispersal patterns, spatial movement, nest establishment, and reproduction. In 2012, we studied the impact of 1) the color of nest boxes covaried with four nest box density treatments and 2) the number of bee release sites covaried with two nest box density treatments on the reproductive success of Osmia lignaria Say in a California almond orchard pollinated by a mixture of O. lignaria and Apis mellifera L. Nest box color influenced the number of nests, total cells, and cells with male and female brood. More nests and cells were produced in light blue nest boxes than in orange or yellow nest boxes. The covariate nest box density also had a significant effect on brood production. The number of release sites did not affect O. lignaria nesting and reproduction, but the number of cavities in nest boxes influenced reproduction. Overall, the color of nest boxes and their distribution, but not the number of release sites, can greatly affect O. lignaria nest establishment and reproductive success in a commercial almond orchard. The ability to locate nesting sites in a homogenous, large orchard landscape may also be facilitated by the higher frequency of nest boxes with low numbers of cavities, and by the ability to detect certain nest box colors that best contrast with the blooming trees.


Subject(s)
Beekeeping/instrumentation , Bees , Nesting Behavior , Animals , Color , Female , Male , Prunus dulcis , Reproduction
8.
J Econ Entomol ; 104(4): 1153-61, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21882677

ABSTRACT

Pollination services of pumpkin, Cucurbita pepo L., provided by the European honey bee, Apis mellifera L., were compared with two native bee species, the common eastern bumble bee, Bombus impatiens (Cresson), and Peponapis pruinosa Say, in New York from 2008 to 2010. Performance of each species was determined by comparing single-visit pollen deposition, percentage of visits that contacted the stigma, flower-handling time, fruit and seed set, and fruit weight per number of visits. Fruit yield from small fields (0.6 ha) supplemented with commercial B. impatiens colonies was compared with yield from those not supplemented. A. mellifera spent nearly 2 and 3 times longer foraging on each pistillate flower compared with B. impatiens and P. pruinosa, respectively. A. mellifera also visited pistillate flowers 10-20 times more frequently than B. impatiens and P. pruinosa, respectively. Yet, B. impatiens deposited 3 times more pollen grains per stigma and contacted stigmas significantly more often than either A. mellifera or P. pruinosa. Fruit set and weight from flowers visited four to eight times by B. impatiens were similar to those from open-pollinated flowers, whereas flowers pollinated by A. mellifera and P. pruinosa produced fewer fruit and smaller fruit compared with those from open-pollinated flowers. Fields supplemented with B. impatiens produced significantly more pumpkins per plant than nonsupplemented fields. B. impatiens was a better pollinator of pumpkin than P. pruinosa and should be considered as a promising alternative to A. mellifera for pollinating this crop.


Subject(s)
Bees , Behavior, Animal , Biomass , Cucurbita/growth & development , Pollination , Animals , Fruit/growth & development
9.
Environ Entomol ; 40(5): 1144-58, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22251726

ABSTRACT

The purpose of this study was to identify bee species active in pumpkin fields in New York and to estimate their potential as pollinators by examining their foraging activity. In addition, we examined whether foraging activity was affected by either the addition of hives of the honey bee, Apis mellifera L., or by field size. Thirty-five pumpkin (Cucurbita spp.) fields ranging from 0.6 to 26.3 ha, 12 supplemented with A. mellifera hives and 23 not supplemented, were sampled during peak flowering over three successive weeks in 2008 and 2009. Flowers from 300 plants per field were visually sampled for bees on each sampling date. A. mellifera, Bombus impatiens Cresson, and Peponapis pruinosa (Say) accounted for 99% of all bee visits to flowers. A. mellifera and B. impatiens visited significantly more pistillate flowers than would be expected by chance, whereas P. pruinosa showed no preference for visiting pistillate flowers. There were significantly more A. mellifera visits per flower in fields supplemented with A. mellifera hives than in fields not supplemented, but there were significantly fewer P. pruinosa visits in supplemented fields. The number of B. impatiens visits was not affected by supplementation, but was affected by number of flowers per field. A. mellifera and P. pruinosa visits were not affected by field size, but B. impatiens visited fewer flowers as field size increased in fields that were not supplemented with A. mellifera hives. Declining A. mellifera populations may increase the relative importance of B. impatiens in pollinating pumpkins in New York.


Subject(s)
Appetitive Behavior , Bees , Cucurbita , Flowers , Pollination , Agriculture , Animals , Feeding Behavior , Female , Linear Models , Male , Plant Nectar
10.
Am J Bot ; 97(9): 1498-510, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21616904

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Flowering plants that rely on pollinators for most of their reproduction may experience unpredictable and inconsistent availability of effective pollinators throughout their reproductive lifetime. We investigated the reproductive ecology of two subspecies of the tufted evening primrose, Oenothera cespitosa, which occupy geographically and edaphically distinct habitats in western North America: O. cespitosa subsp. navajoensis inhabits sandstone soils on open sites or rocky slopes in the Colorado Plateau and O. cespitosa subsp. cespitosa grows in clay soils on talus slopes and exposed rocky ridges in the western Great Plains and northern Rocky Mountains of the United States. • METHODS: Pollen augmentation and selfing experiments, floral visitor observations, and single-visit effectiveness experiments were conducted over 4 years to examine the breeding system and spatiotemporal variation in pollinator behavior, assemblage, and abundance at different populations for each subspecies. • KEY RESULTS: Both subspecies of O. cespitosa were self-incompatible and pollen-limited, suggesting that the relative abundance, effectiveness, and movement patterns of different insects as pollinators influenced the quality and quantity of seed production in these plants. Medium-sized vespertine hawkmoths (Hyles lineata, Sphinx vashti) were effective pollinators when present, as were large matinal bees (Anthophora affabilis, A. dammersi, Xylocopa tabaniformis androleuca), whereas small oligolectic Lasioglossum bees primarily functioned as pollen thieves in the evening and morning. • CONCLUSIONS: These findings highlight the importance of variability of pollinator composition and abundance in the evolution of plant breeding systems and reproductive success at varying spatial and temporal scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...