Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Nat Commun ; 14(1): 7958, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042814

ABSTRACT

Herpesviruses remain a burden for animal and human health, including the medically important varicella-zoster virus (VZV). Membrane fusion mediated by conserved core glycoproteins, the fusogen gB and the heterodimer gH-gL, enables herpesvirus cell entry. The ectodomain of gB orthologs has five domains and is proposed to transition from a prefusion to postfusion conformation but the functional relevance of the domains for this transition remains poorly defined. Here we describe structure-function studies of the VZV gB DIII central helix targeting residues 526EHV528. Critically, a H527P mutation captures gB in a prefusion conformation as determined by cryo-EM, a loss of membrane fusion in a virus free assay, and failure of recombinant VZV to spread in cell monolayers. Importantly, two predominant cryo-EM structures of gB[H527P] are identified by 3D classification and focused refinement, suggesting they represented gB conformations in transition. These studies reveal gB DIII as a critical element for herpesvirus gB fusion function.


Subject(s)
Herpesvirus 1, Human , Viral Envelope Proteins , Animals , Humans , Viral Envelope Proteins/metabolism , Mutagenesis , Mutation , Herpesvirus 3, Human/genetics , Herpesvirus 1, Human/genetics , Virus Internalization
2.
Microbiol Mol Biol Rev ; 87(3): e0011622, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37354037

ABSTRACT

Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.


Subject(s)
Chickenpox , Herpesvirus 3, Human , Humans , Antiviral Agents
3.
Curr Top Microbiol Immunol ; 438: 75-84, 2023.
Article in English | MEDLINE | ID: mdl-35624345

ABSTRACT

Host-pathogen interactions involve complex inside-out and outside-in signal transmission through critical cellular networks that dictate disease outcomes. The phosphoinositide 3-kinase (PI3K)/Akt pathway is a pivotal junction that regulates several cell functions, and phospho-Akt (pAkt) is often found to be constitutively active in cancer cells, similar to phospho-STAT3. In this chapter, we discuss the regulation of PI3K/Akt pathway in VZV infected cells and of other pathways including p53 which, unlike pAkt and pSTAT3, directs cells towards apoptosis. The fine spatio-temporal balance of activation of pro- and anti-apoptotic factors during VZV infection likely provides an optimum environment for the virus to replicate and cause disease in the human host.


Subject(s)
Herpesvirus 3, Human , Phosphatidylinositol 3-Kinases , Humans , Herpesvirus 3, Human/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Host-Pathogen Interactions
4.
iScience ; 26(1): 105726, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36507220

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both prefusion and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sublineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

5.
bioRxiv ; 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36203553

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

6.
J Infect Dis ; 226(Suppl 4): S385-S391, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36265853

ABSTRACT

While the varicella vaccine was created with approaches established for other live attenuated viral vaccines, novel methods to probe virus-host interactions have been used to explore the genetics, pathogenesis, and immunogenicity of the vaccine compared to wild-type varicella-zoster virus (VZV). As summarized here, a mechanism-based understanding of the safety and efficacy of the varicella vaccine has been achieved through these investigations.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Viral Vaccines , Humans , Chickenpox Vaccine/genetics , Herpes Zoster/prevention & control , Herpesvirus 3, Human/genetics , Vaccines, Attenuated/genetics , Antigens, Viral
7.
Proteins ; 89(12): 1647-1672, 2021 12.
Article in English | MEDLINE | ID: mdl-34561912

ABSTRACT

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Subject(s)
Models, Molecular , Protein Conformation , Proteins/chemistry , Software , Amino Acid Sequence , Computational Biology , Cryoelectron Microscopy , Crystallography, X-Ray , Sequence Analysis, Protein
8.
Nature ; 596(7873): 495-504, 2021 08.
Article in English | MEDLINE | ID: mdl-34237771

ABSTRACT

There is a realistic expectation that the global effort in vaccination will bring the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under control. Nonetheless, uncertainties remain about the type of long-term association that the virus will establish with the human population and, in particular, whether coronavirus disease 2019 (COVID-19) will become an endemic disease. Although the trajectory is difficult to predict, the conditions, concepts and variables that influence this transition can be anticipated. Persistence of SARS-CoV-2 as an endemic virus, perhaps with seasonal epidemic peaks, may be fuelled by pockets of susceptible individuals and waning immunity after infection or vaccination, changes in the virus through antigenic drift that diminish protection and re-entries from zoonotic reservoirs. Here we review relevant observations from previous epidemics and discuss the potential evolution of SARS-CoV-2 as it adapts during persistent transmission in the presence of a level of population immunity. Lack of effective surveillance or adequate response could enable the emergence of new epidemic or pandemic patterns from an endemic infection of SARS-CoV-2. There are key pieces of data that are urgently needed in order to make good decisions; we outline these and propose a way forward.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/transmission , COVID-19 Vaccines/immunology , COVID-19 Vaccines/supply & distribution , Evolution, Molecular , Humans , Immune Evasion , Immunization Programs , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , SARS-CoV-2/immunology , Time Factors
9.
PLoS Pathog ; 17(1): e1008961, 2021 01.
Article in English | MEDLINE | ID: mdl-33411789

ABSTRACT

Varicella-zoster virus (VZV) is a medically important alphaherpesvirus that induces fusion of the virion envelope and the cell membrane during entry, and between cells to form polykaryocytes within infected tissues during pathogenesis. All members of the Herpesviridae, including VZV, have a conserved core fusion complex composed of glycoproteins, gB, gH and gL. The ectodomain of the primary fusogen, gB, has five domains, DI-V, of which DI contains the fusion loops needed for fusion function. We recently demonstrated that DIV is critical for fusion initiation, which was revealed by a 2.8Å structure of a VZV neutralizing mAb, 93k, bound to gB and mutagenesis of the gB-93k interface. To further assess the mechanism of mAb 93k neutralization, the binding site of a non-neutralizing mAb to gB, SG2, was compared to mAb 93k using single particle cryogenic electron microscopy (cryo-EM). The gB-SG2 interface partially overlapped with that of gB-93k but, unlike mAb 93k, mAb SG2 did not interact with the gB N-terminus, suggesting a potential role for the gB N-terminus in membrane fusion. The gB ectodomain structure in the absence of antibody was defined at near atomic resolution by single particle cryo-EM (3.9Å) of native, full-length gB purified from infected cells and by X-ray crystallography (2.4Å) of the transiently expressed ectodomain. Both structures revealed that the VZV gB N-terminus (aa72-114) was flexible based on the absence of visible structures in the cryo-EM or X-ray crystallography data but the presence of gB N-terminal peptides were confirmed by mass spectrometry. Notably, N-terminal residues 109KSQD112 were predicted to form a small α-helix and alanine substitution of these residues abolished cell-cell fusion in a virus-free assay. Importantly, transferring the 109AAAA112 mutation into the VZV genome significantly impaired viral propagation. These data establish a functional role for the gB N-terminus in membrane fusion broadly relevant to the Herpesviridae.


Subject(s)
Herpesvirus 3, Human/physiology , Melanoma/metabolism , Membrane Fusion , Viral Envelope Proteins/metabolism , Virus Internalization , Amino Acid Sequence , Crystallography, X-Ray , Humans , Melanoma/virology , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Sequence Homology , Tumor Cells, Cultured , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
10.
PLoS Pathog ; 16(12): e1009166, 2020 12.
Article in English | MEDLINE | ID: mdl-33370402

ABSTRACT

Herpes simplex virus 1 (HSV-1) infects skin and mucosal epithelial cells and then travels along axons to establish latency in the neurones of sensory ganglia. Although viral gene expression is restricted during latency, the latency-associated transcript (LAT) locus encodes many RNAs, including a 2 kb intron known as the hallmark of HSV-1 latency. Here, we studied HSV-1 infection and the role of the LAT locus in human skin xenografts in vivo and in cultured explants. We sequenced the genomes of our stock of HSV-1 strain 17syn+ and seven derived viruses and found nonsynonymous mutations in many viral proteins that had no impact on skin infection. In contrast, deletions in the LAT locus severely impaired HSV-1 replication and lesion formation in skin. However, skin replication was not affected by impaired intron splicing. Moreover, although the LAT locus has been implicated in regulating gene expression in neurones, we observed only small changes in transcript levels that were unrelated to the growth defect in skin, suggesting that its functions in skin may be different from those in neurones. Thus, although the LAT locus was previously thought to be dispensable for lytic infection, we show that it is a determinant of HSV-1 virulence during lytic infection of human skin.


Subject(s)
Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , MicroRNAs/genetics , Skin/virology , Virulence/genetics , Animals , Heterografts , Humans , Mice , Virulence Factors/genetics
11.
Biochem Soc Trans ; 48(6): 2415-2435, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33259590

ABSTRACT

Varicella-zoster virus (VZV) is the causative agent of chicken pox (varicella) and shingles (zoster). Although considered benign diseases, both varicella and zoster can cause complications. Zoster is painful and can lead to post herpetic neuralgia. VZV has also been linked to stroke, related to giant cell arteritis in some cases. Vaccines are available but the attenuated vaccine is not recommended in immunocompromised individuals and the efficacy of the glycoprotein E (gE) based subunit vaccine has not been evaluated for the prevention of varicella. A hallmark of VZV pathology is the formation of multinucleated cells termed polykaryocytes in skin lesions. This cell-cell fusion (abbreviated as cell fusion) is mediated by the VZV glycoproteins gB, gH and gL, which constitute the fusion complex of VZV, also needed for virion entry. Expression of gB, gH and gL during VZV infection and trafficking to the cell surface enables cell fusion. Recent evidence supports the concept that cellular processes are required for regulating cell fusion induced by gB/gH-gL. Mutations within the carboxyl domains of either gB or gH have profound effects on fusion regulation and dramatically restrict the ability of VZV to replicate in human skin. This loss of regulation modifies the transcriptome of VZV infected cells. Furthermore, cellular proteins have significant effects on the regulation of gB/gH-gL-mediated cell fusion and the replication of VZV, exemplified by the cellular phosphatase, calcineurin. This review provides the current state-of-the-art knowledge about the molecular controls of cell fusion-dependent pathogenesis caused by VZV.


Subject(s)
Herpesvirus 3, Human/immunology , Host-Pathogen Interactions , Varicella Zoster Virus Infection/virology , Viral Envelope Proteins/metabolism , Virus Internalization , Animals , Cell Fusion , Chickenpox Vaccine , Dimerization , Gene Expression Regulation, Viral , Herpesvirus 3, Human/genetics , Humans , Immunoglobulin E/chemistry , Membrane Glycoproteins/metabolism , Mice , Mutagenesis , Mutation , Open Reading Frames , Protein Conformation , Varicella Zoster Virus Infection/immunology , Varicella Zoster Virus Infection/prevention & control , Viral Proteins/metabolism , Virion/metabolism
12.
PLoS Pathog ; 16(11): e1009022, 2020 11.
Article in English | MEDLINE | ID: mdl-33216797

ABSTRACT

Cell-cell fusion (abbreviated as cell fusion) is a characteristic pathology of medically important viruses, including varicella-zoster virus (VZV), the causative agent of chickenpox and shingles. Cell fusion is mediated by a complex of VZV glycoproteins, gB and gH-gL, and must be tightly regulated to enable skin pathogenesis based on studies with gB and gH hyperfusogenic VZV mutants. Although the function of gB and gH-gL in the regulation of cell fusion has been explored, whether host factors are directly involved in this regulation process is unknown. Here, we discovered host factors that modulated VZV gB/gH-gL mediated cell fusion via high-throughput screening of bioactive compounds with known cellular targets. Two structurally related non-antibiotic macrolides, tacrolimus and pimecrolimus, both significantly increased VZV gB/gH-gL mediated cell fusion. These compounds form a drug-protein complex with FKBP1A, which binds to calcineurin and specifically inhibits calcineurin phosphatase activity. Inhibition of calcineurin phosphatase activity also enhanced both herpes simplex virus-1 fusion complex and syncytin-1 mediated cell fusion, indicating a broad role of calcineurin in modulating this process. To characterize the role of calcineurin phosphatase activity in VZV gB/gH-gL mediated fusion, a series of biochemical, biological and infectivity assays was performed. Pimecrolimus-induced, enhanced cell fusion was significantly reduced by shRNA knockdown of FKBP1A, further supporting the role of calcineurin phosphatase activity in fusion regulation. Importantly, inhibition of calcineurin phosphatase activity during VZV infection caused exaggerated syncytia formation and suppressed virus propagation, which was consistent with the previously reported phenotypes of gB and gH hyperfusogenic VZV mutants. Seven host cell proteins that remained uniquely phosphorylated when calcineurin phosphatase activity was inhibited were identified as potential downstream factors involved in fusion regulation. These findings demonstrate that calcineurin is a critical host cell factor pivotal in the regulation of VZV induced cell fusion, which is essential for VZV pathogenesis.


Subject(s)
Calcineurin/metabolism , Chickenpox/virology , Herpes Zoster/virology , Herpesvirus 3, Human/physiology , Membrane Glycoproteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Viral Envelope Proteins/metabolism , Viral Proteins/metabolism , Cell Fusion , Cell Line , Glycoproteins/metabolism , Herpesvirus 3, Human/genetics , Humans , Mutation
13.
Sci Transl Med ; 12(568)2020 11 04.
Article in English | MEDLINE | ID: mdl-33077678

ABSTRACT

Rapid development of an efficacious vaccine against the viral pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of the coronavirus disease 2019 (COVID-19) pandemic, is essential, but rigorous studies are required to determine the safety of candidate vaccines. Here, on behalf of the Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Working Group, we evaluate research on the potential risk of immune enhancement of disease by vaccines and viral infections, including coronavirus infections, together with emerging data about COVID-19 disease. Vaccine-associated enhanced disease has been rarely encountered with existing vaccines or viral infections. Although animal models of SARS-CoV-2 infection may elucidate mechanisms of immune protection, we need observations of enhanced disease in people receiving candidate COVID-19 vaccines to understand the risk of immune enhancement of disease. Neither principles of immunity nor preclinical studies provide a basis for prioritizing among the COVID-19 vaccine candidates with respect to safety at this time. Rigorous clinical trial design and postlicensure surveillance should provide a reliable strategy to identify adverse events, including the potential for enhanced severity of COVID-19 disease, after vaccination.


Subject(s)
Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Animals , COVID-19 , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/prevention & control , Disease Models, Animal , Drug Development , Humans , Pandemics , Vaccination
14.
Nat Commun ; 11(1): 4398, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859924

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Nat Commun ; 11(1): 4141, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811830

ABSTRACT

Members of the Herpesviridae, including the medically important alphaherpesvirus varicella-zoster virus (VZV), induce fusion of the virion envelope with cell membranes during entry, and between cells to form polykaryocytes in infected tissues. The conserved glycoproteins, gB, gH and gL, are the core functional proteins of the herpesvirus fusion complex. gB serves as the primary fusogen via its fusion loops, but functions for the remaining gB domains remain unexplained. As a pathway for biological discovery of domain function, our approach used structure-based analysis of the viral fusogen together with a neutralizing antibody. We report here a 2.8 Å cryogenic-electron microscopy structure of native gB recovered from VZV-infected cells, in complex with a human monoclonal antibody, 93k. This high-resolution structure guided targeted mutagenesis at the gB-93k interface, providing compelling evidence that a domain spatially distant from the gB fusion loops is critical for herpesvirus fusion, revealing a potential new target for antiviral therapies.


Subject(s)
Antibodies, Neutralizing/chemistry , Herpesvirus 3, Human/chemistry , Viral Envelope Proteins/chemistry , Virus Internalization , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Cryoelectron Microscopy , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Conformation, beta-Strand/genetics , Protein Domains/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/ultrastructure
16.
Open Forum Infect Dis ; 7(7): ofaa172, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32665955

ABSTRACT

BACKGROUND: In phase 3 trials, inactivated varicella zoster virus (VZV) vaccine (ZVIN) was well tolerated and efficacious against herpes zoster (HZ) in autologous hematopoietic stem cell transplant (auto-HSCT) recipients and patients with solid tumor malignancies receiving chemotherapy (STMc) but did not reduce HZ incidence in patients with hematologic malignancies (HMs). Here, we describe ZVIN immunogenicity from these studies. METHODS: Patients were randomized to ZVIN or placebo (4 doses). Immunogenicity was assessed by glycoprotein enzyme-linked immunosorbent assay (gpELISA) and VZV interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay in patients receiving all 4 doses without developing HZ at the time of blood sampling. RESULTS: Estimated geometric mean fold rise ratios (ZVIN/placebo) by gpELISA and IFN-y ELISPOT ~28 days post-dose 4 were 2.02 (95% confidence interval [CI], 1.53-2.67) and 5.41 (95% CI, 3.60-8.12) in auto-HSCT recipients; 1.88 (95% CI, 1.79-1.98) and 2.10 (95% CI, 1.69-2.62) in patients with STMc; and not assessed and 2.35 (95% CI, 1.81-3.05) in patients with HM. CONCLUSIONS: ZVIN immunogenicity was directionally consistent with clinical efficacy in auto-HSCT recipients and patients with STMc even though HZ protection and VZV immunity were not statistically correlated. Despite a lack of clinical efficacy in patients with HM, ZVIN immunogenicity was observed in this population. Immunological results did not predict vaccine efficacy in these 3 populations. CLINICAL TRIAL REGISTRATION: NCT01229267, NCT01254630.

17.
Nature ; 584(7821): 353-363, 2020 08.
Article in English | MEDLINE | ID: mdl-32659783

ABSTRACT

Antibody-dependent enhancement (ADE) of disease is a general concern for the development of vaccines and antibody therapies because the mechanisms that underlie antibody protection against any virus have a theoretical potential to amplify the infection or trigger harmful immunopathology. This possibility requires careful consideration at this critical point in the pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we review observations relevant to the risks of ADE of disease, and their potential implications for SARS-CoV-2 infection. At present, there are no known clinical findings, immunological assays or biomarkers that can differentiate any severe viral infection from immune-enhanced disease, whether by measuring antibodies, T cells or intrinsic host responses. In vitro systems and animal models do not predict the risk of ADE of disease, in part because protective and potentially detrimental antibody-mediated mechanisms are the same and designing animal models depends on understanding how antiviral host responses may become harmful in humans. The implications of our lack of knowledge are twofold. First, comprehensive studies are urgently needed to define clinical correlates of protective immunity against SARS-CoV-2. Second, because ADE of disease cannot be reliably predicted after either vaccination or treatment with antibodies-regardless of what virus is the causative agent-it will be essential to depend on careful analysis of safety in humans as immune interventions for COVID-19 move forward.


Subject(s)
Antibodies, Viral/adverse effects , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Dengue Virus/immunology , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Macaca mulatta , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Orthomyxoviridae/immunology , Pandemics , Rats , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Viral Vaccines/adverse effects , Viral Vaccines/immunology
18.
Front Microbiol ; 11: 1224, 2020.
Article in English | MEDLINE | ID: mdl-32676054

ABSTRACT

Unraveling the heterogeneity in biological systems provides the key to understanding of the fundamental dynamics that regulate host pathogen relationships at the single cell level. While most studies have determined virus-host cell interactions using cultured cells in bulk, recent advances in deep protein profiling from single cells enable the understanding of the dynamic response equilibrium of single cells even within the same cell types. Mass cytometry allows the simultaneous detection of multiple proteins in single cells, which helps to evaluate alterations in multiple signaling networks that work in tandem in deciding the response of a cell to the presence of a pathogen or other stimulus. In applying this technique to studying varicella zoster virus (VZV), it was possible to better understand the molecular basis for lymphotropism of the virus and how virus-induced effects on T cells promoted skin tropism. While the ability of VZV to manifest itself in the skin is well established, how the virus is transported to the skin and causes the characteristic VZV skin lesions was not well elucidated. Through mass cytometry analysis of VZV-infected tonsil T cells, we were able to observe that VZV unleashes a "remodeling" program in the infected T cells that not only makes these T cells more skin tropic but also at the same time induces changes that make these T cells unlikely to respond to immune stimulation during the journey to the skin.

19.
J Virol ; 94(15)2020 07 16.
Article in English | MEDLINE | ID: mdl-32295910

ABSTRACT

During all stages of infection, herpes simplex virus 1 (HSV-1) expresses viral microRNAs (miRNAs). There are at least 20 confirmed HSV-1 miRNAs, yet the roles of individual miRNAs in the context of viral infection remain largely uncharacterized. We constructed a recombinant virus lacking the sequences for miR-H1-5p and miR-H6-3p (17dmiR-H1/H6). The seed sequences for these miRNAs are antisense to each other and are transcribed from divergent noncoding RNAs in the latency-associated transcript (LAT) promoter region. Comparing phenotypes exhibited by the recombinant virus lacking these miRNAs to the wild type (17syn+), we found that during acute infection in cell culture, 17dmiR-H1/H6 exhibited a modest increase in viral yields. Analysis of pathogenesis in the mouse following footpad infection revealed a slight increase in virulence for 17dmiR-H1/H6 but no significant difference in the establishment or maintenance of latency. Strikingly, explant of latently infected dorsal root ganglia revealed a decreased and delayed reactivation phenotype. Further, 17dmiR-H1/H6 was severely impaired in epinephrine-induced reactivation in the rabbit ocular model. Finally, we demonstrated that deletion of miR-H1/H6 increased the accumulation of the LAT as well as several of the LAT region miRNAs. These results suggest that miR-H1/H6 plays an important role in facilitating efficient reactivation from latency.IMPORTANCE While HSV antivirals reduce the severity and duration of clinical disease in some individuals, there is no vaccine or cure. Therefore, understanding the mechanisms regulating latency and reactivation as a potential to elucidate targets for better therapeutics is important. There are at least 20 confirmed HSV-1 miRNAs, yet the roles of individual miRNAs in the context of viral infection remain largely uncharacterized. The present study focuses on two of the miRNAs (miR-H1/H6) that are encoded within the latency-associated transcript (LAT) region, a portion of the genome that has been associated with efficient reactivation. Here, we demonstrate that the deletion of the seed sequences of these miRNAs results in a severe reduction in reactivation of HSV-1 in the mouse and rabbit models. These results suggest a linkage between these miRNAs and reactivation.


Subject(s)
Ganglia, Spinal/metabolism , Herpes Simplex/metabolism , Herpesvirus 1, Human/physiology , MicroRNAs/metabolism , RNA, Viral/metabolism , Virus Activation , Virus Latency , Animals , Ganglia, Spinal/virology , HEK293 Cells , Herpes Simplex/genetics , Humans , Mice , MicroRNAs/genetics , RNA, Viral/genetics , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...