Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 23: 731-742, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33575118

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene. All patients have at least one copy of a paralog, SMN2, but a C-to-T transition in this gene results in exon 7 skipping in a majority of transcripts. Approved treatment for SMA involves promoting exon 7 inclusion in the SMN2 transcript or increasing the amount of full-length SMN by gene replacement with a viral vector. Increasing the pool of SMN2 transcripts and increasing their translational efficiency can be used to enhance splice correction. We sought to determine whether the 5' untranslated region (5' UTR) of SMN2 contains a repressive feature that can be targeted to increase SMN levels. We found that antisense oligonucleotides (ASOs) complementary to the 5' end of SMN2 increase SMN mRNA and protein levels and that this effect is due to inhibition of SMN2 mRNA decay. Moreover, use of the 5' UTR ASO in combination with a splice-switching oligonucleotide (SSO) increases SMN levels above those attained with the SSO alone. Our results add to the current understanding of SMN regulation and point toward a new therapeutic target for SMA.

3.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32606248

ABSTRACT

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Subject(s)
Actinobacteria/genetics , Antiviral Agents/pharmacology , Genome, Bacterial , Macrolides/pharmacology , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Tacrolimus Binding Protein 1A/chemistry , Tacrolimus Binding Protein 1A/metabolism , Actinobacteria/metabolism , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Evolution, Molecular , HEK293 Cells , Humans , Macrolides/chemistry , Macrolides/metabolism , Models, Molecular , Protein Conformation , Sequence Homology , Sirolimus/chemistry , Sirolimus/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
4.
Cell Rep ; 29(5): 1082-1098.e10, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31665626

ABSTRACT

Chondrolectin (Chodl) is needed for motor axon extension in zebrafish and is dysregulated in mouse models of spinal muscular atrophy (SMA). However, the mechanistic basis of Chodl function is not known. Here, we use Chodl-deficient zebrafish and mouse mutants to show that the absence of Chodl leads to anatomical and functional defects of the neuromuscular synapse. In zebrafish, the growth of an identified motor axon beyond an "en passant" synapse and later axon branching from synaptic points are impaired, leading to functional deficits. Mechanistically, motor-neuron-autonomous Chodl function depends on its intracellular domain and on binding muscle-derived collagen XIXa1 by its extracellular C-type lectin domain. Our data support evolutionarily conserved roles of Chodl in synaptogenesis and provide evidence for a "synapse-first" scenario of motor axon growth in zebrafish.


Subject(s)
Axons/metabolism , Fibril-Associated Collagens/metabolism , Lectins, C-Type/metabolism , Neuromuscular Junction/growth & development , Neuromuscular Junction/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Conserved Sequence , Electrophysiological Phenomena , Escape Reaction , Evolution, Molecular , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Larva/physiology , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Mice , Motor Activity , Motor Endplate/metabolism , Motor Neurons/metabolism , Mutation/genetics , Neurites/metabolism , Neurogenesis , Phenotype , Protein Binding , Protein Domains , Synapses/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
5.
Hum Mol Genet ; 23(6): 1551-62, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24179176

ABSTRACT

Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays based on molecular features of DM have also been employed. Two compounds that reduce and/or remove nuclear foci have been identified, Ro 31-8220 and chromomycin A3. Ro 31-8220 is a PKC inhibitor, previously shown to affect the hyperphosphorylation of CELF1 and ameliorate the cardiac phenotype in a DM1 mouse model. We show that the same compound eliminates nuclear foci, reduces MBNL1 protein in the nucleus, affects ATP2A1 alternative splicing and reduces steady-state levels of CELF1 protein. We demonstrate that this effect is independent of PKC activity and conclude that this compound may be acting on alternative kinase targets within DM pathophysiology. Understanding the activity profile for this compound is key for the development of targeted therapeutics in the treatment of DM.


Subject(s)
Cell Nucleus/drug effects , Chromomycin A3/pharmacology , Indoles/pharmacology , Myotonic Dystrophy/pathology , RNA-Binding Proteins/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Alternative Splicing , Animals , CELF1 Protein , Cell Nucleus/pathology , Cells, Cultured , Disease Models, Animal , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Peptide Library , RNA-Binding Proteins/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction/drug effects , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...