Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Foods ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38472921

ABSTRACT

Frozen yogurts contain yogurt culture bacteria, which might impart health benefits to their consumers. Global frozen yogurt market sales are expected to grow by 4.8% by 2028, which represents an important opportunity for the industry, consumers and researchers. Polyphenols are metabolites found in plants which have antioxidant and anti-inflammatory properties and might prevent chronic diseases such as cancer, diabetes and cardiovascular diseases. The objective of this study was to elucidate the effect of the polyphenol hesperidin on the physico-chemical, microbiological and sensory characteristics of frozen yogurts. Hesperidin was incorporated into frozen yogurt at three concentrations (125, 250 and 500 mg/90 g of product), while yogurt with no hesperidin was used as a control. The viscosity and overrun of the frozen yogurt were analyzed on day 0. The hardness, pH, color and Lactobacillus bulgaricus and Streptococcus thermophilus counts were determined after 0, 30 and 60 d. The melting rate was determined at 60 and 90 min after 0, 30 and 60 d. The bile and acid tolerances of both S. thermophilus and L. bulgaricus were measured after 7 and 60 d. A hedonic scale of nine points was used to measure sensory attributes. Data were analyzed at α = 0.05 with an ANOVA with Tukey's adjustment, and McNemar's test was used to analyze purchase intent. Hesperidin did not influence the pH, overrun or microbial characteristics. Polyphenol addition compared to the control decreased the melting rate but increased the hardness and bile tolerance of L. bulgaricus, as well as the L* and b* values. The sensory characteristics were not influenced by the lowest concentration of hesperidin, as it was not statistically different from the control. Moreover, consumers were interested in purchasing frozen yogurt with added hesperidin after learning about the health claim. This study can assist in the development of a healthier frozen yogurt in an increasingly competitive market.

2.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38004377

ABSTRACT

The impact of yogurts made with starter culture bacteria (L. bulgaricus and S. thermophilus) and supplemented with ingredients (maitake mushrooms, quercetin, L-glutamine, slippery elm bark, licorice root, N-acetyl-D-glucosamine, zinc orotate, and marshmallow root) that can help treat leaky gut were investigated using the Caco-2 cell monolayer as a measure of intestinal barrier dysfunction. Milk from the same source was equally dispersed into nine pails, and the eight ingredients were randomly allocated to the eight pails. The control had no ingredients. The Caco-2 cells were treated with isoflavone genistein (negative control) and growth media (positive control). Inflammation was stimulated using an inflammatory cocktail of cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-1ß) and lipopolysaccharide. The yogurt without ingredients (control yogurt) was compared to the yogurt treatments (yogurts with ingredients) that help treat leaky gut. Transepithelial electrical resistance (TEER) and paracellular permeability were measured to evaluate the integrity of the Caco-2 monolayer. Transmission electron microscopy (TEM), immunofluorescence microscopy (IM), and real-time quantitative polymerase chain reaction (RTQPCR) were applied to measure the integrity of tight junction proteins. The yogurts were subjected to gastric and intestinal digestion, and TEER was recorded. Ferrous ion chelating activity, ferric reducing potential, and DPPH radical scavenging were also examined to determine the yogurts' antioxidant capacity. Yogurt with quercetin and marshmallow root improved the antioxidant activity and TEER and had the lowest permeability in fluorescein isothiocyanate (FITC)-dextran and Lucifer yellow flux among the yogurt samples. TEM, IM, and RTQPCR revealed that yogurt enhanced tight junction proteins' localization and gene expression. Intestinal digestion of the yogurt negatively impacted inflammation-induced Caco-2 barrier dysfunction, while yogurt with quercetin, marshmallow root, maitake mushroom, and licorice root had the highest TEER values compared to the control yogurt. Yogurt fortification with quercetin, marshmallow root, maitake mushroom, and licorice root may improve functionality when dealing with intestinal barrier dysfunction.

3.
Microorganisms ; 11(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37764135

ABSTRACT

The current research aimed to evaluate the potential effects of Solanum mammosum, Dioon mejiae, and Amanita caesarea on Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survival and performance after exposure to different harsh conditions such as bile, acid, gastric juice, and lysozyme to mimic the digestive system from mouth to the intestine. Probiotic protease activity was observed to evaluate the proteolytic system. Probiotics were cultured in a broth mixed with plant material, and after incubation, the results were compared to the control sample. Therefore, plant material's total phenolic compound, total carotenoid compound, antioxidant activity, sugar profile, and acid profile were obtained to discuss their impact on the survival of probiotics. The results indicate that Amanita caesarea negatively affected probiotic survival in the bile tolerance test and positively affected Lactobacillus bulgaricus in the protease activity test. Otherwise, the other plant material did not change the results significantly (p > 0.05) compared to the control in different tests. Consequently, Solanum mammosum and Dioon mejiae had no significant effects (p > 0.05) in increasing probiotic survival.

4.
Microorganisms ; 11(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37110316

ABSTRACT

Consumers are becoming aware of functional ingredients such as medicinal herbs, polyphenols, mushrooms, amino acids, proteins, and probiotics more than ever before. Like yogurt and its probiotics, L-glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-D-glucosamine, licorice root, maitake mushrooms, and zinc orotate have demonstrated health benefits through gut microbiota. The impact of these ingredients on yogurt starter culture bacteria characteristics is not well known. The objective of this study was to determine the influence of these ingredients on the probiotic characteristics, tolerance to gastric juices and lysozyme, protease activity, and viability of Streptococcus thermophilus STI-06 and Lactobacillus bulgaricus LB-12. Acid tolerance was determined at 0, 30, 60, 90, and 120 min of incubation, whereas bile tolerance was analyzed at 0, 4, and 8 h. The microbial growth was determined at 0, 2, 4, 6, 8, 10, 12, 14, and 16 h of incubation, while protease activity was evaluated at 0, 12, and 24 h. The application of marshmallow root, licorice root, and slippery elm bark improved bile tolerance and acid tolerance of S. thermophilus. These ingredients did not impact the bile tolerance, acid tolerance, and simulated gastric juice tolerance characteristics of L. bulgaricus over 8 h and 120 min (respectively) of incubation. Similarly, the growth of S. thermophilus and L. bulgaricus was not affected by any of these functional ingredients. The application of marshmallow root, N-acetyl-D-glucosamine, and maitake mushroom significantly increased the protease activity of S. thermophilus, whereas the protease activity of L. bulgaricus was not affected by any ingredient. Compared to the control, marshmallow root and quercetin samples had higher mean log counts and log counts for S. thermophilus on the simulated gastric juice and lysozyme resistance in vitro test, respectively. For L. bulgaricus, licorice root, quercetin, marshmallow root, and slippery elm bark samples had higher log counts than the control samples.

5.
J Dairy Sci ; 106(6): 3868-3883, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080788

ABSTRACT

l-Glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate have been reported to help treat leaky gut. The purpose of this research was to explore the impact of these functional ingredients on the physico-chemical, microbiological, and sensory properties of yogurt. The milk from same source was equally divided into 9 pails and the 8 ingredients were randomly assigned to the 8 pails. The control had no ingredient. Milk was fermented to yogurt. The pH, titratable acidity, syneresis, viscosity, color (L*, a*, b*, C*, and h*), Streptococcus thermophilus counts, and Lactobacillus delbrueckii spp. bulgaricus counts of yogurts were determined on d 1, 7, 14, 21, 28, 35, and 42, whereas coliform counts, yeast and mold counts, and rheological characteristics were determined on d 1 and 42. The sensory study was performed on d 3 and particle size of the functional ingredients (powder form) was also determined. When compared with control, the incorporation of slippery elm bark into yogurts led to less syneresis. l-Glutamine increased pH and n' values (relaxation exponent derived from G') and lowered titratable acidity values. N-Acetyl-d-glucosamine incorporation resulted in higher n' and lower titratable acidity values, whereas maitake mushroom led to lower n' values. Incorporating quercetin increased the growth of L. bulgaricus. Adding maitake mushrooms increased the growth of S. thermophilus but lowered apparent viscosity values, whereas quercetin decreased its S. thermophilus counts. Quercetin decreased L* and a* values but increased b* values, and maitake mushroom increased a* values. Thixotropic behavior increased with the addition of licorice root and quercetin. Adding slippery elm bark, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate into yogurt did not affect the sensory properties, whereas yogurts with quercetin had the lowest sensory scores. Overall, most of these ingredients did not cause major changes to yogurt properties.


Subject(s)
Yogurt , Animals , Glutamine/analysis , Quercetin/analysis , Yogurt/analysis
6.
Molecules ; 28(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36677677

ABSTRACT

The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.


Subject(s)
Gastrointestinal Diseases , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Gastrointestinal Diseases/prevention & control , Irritable Bowel Syndrome/drug therapy , Intestinal Mucosa , Permeability
7.
Mycotoxin Res ; 37(1): 89-96, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33216318

ABSTRACT

In the present study, a total of 112 raw milk samples were collected between October and December of 2018 from dairy farming households in Malawi and analyzed for aflatoxin M1 (AFM1) using VICAM aflatest fluorometry procedure. These data together with the consumption data obtained through a milk consumption frequency questionnaire were used for the calculation of AFM1 exposure and its association with hepatocarcinoma (HCC) risk in dairy farming population. Average daily milk intake by children and adults were approximately 300 ± 0.07 and 541.7 ± 0.14 mL, respectively. All raw milk samples tested positive to AFM1 averaging 0.551 µg/L. Probable mean daily exposure to AFM1 for adults was 4.98 ± 7.25 ng/kg BW/day almost half that of children (8.28 ± 11.82 ng/kg BW/day). Estimated risk of AFM1-induced HCC associated with consumption of milk among children and adults were 0.038 and 0.023 cases per 100,000 individuals per year, respectively. Although the results of this investigation suggest a low risk of HCC, other negative health effects of AFM1 justify its continuous monitoring and update of the risk assessment. This work presents the first insight in the occurrence of AFM1 in cow milk in Malawi as well as associated AFM1 exposure in dairy farming population.


Subject(s)
Aflatoxin M1/analysis , Carcinoma, Hepatocellular/etiology , Liver Neoplasms/etiology , Milk/chemistry , Raw Foods/analysis , Adult , Agriculture , Animals , Carcinoma, Hepatocellular/epidemiology , Cattle , Child , Child, Preschool , Dairying/statistics & numerical data , Food Contamination/analysis , Humans , Liver Neoplasms/epidemiology , Malawi/epidemiology , Risk Factors , Young Adult
8.
J Dairy Sci ; 104(2): 1484-1493, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33309375

ABSTRACT

Camel milk, similar to cow milk, contains all of the essential nutrients as well as potentially health-beneficial compounds with anticarcinogenic, antihypertensive, and antioxidant properties. Camel milk has been used for the treatment of allergies to cow milk, diabetes, and autism. Camel milk helps decrease cholesterol levels in blood and improves metabolism. One of the most desirable food tastes is sweetness. However, the excessive ingestion of sugar negatively affects human health. Monk fruit sweetener is a natural, 0-calorie sweetener with many health-beneficial functions. Monk fruit sweetener helps decrease symptoms of asthma and diabetes, prevents oxidation and cancer, protects the liver, regulates immune function, and lowers glucose levels. Monk fruit sweetener is 100 to 250 times sweeter than sucrose. The objective of this study was to examine the influence of different concentrations of monk fruit sweetener on the physicochemical properties and microbiological counts of drinking yogurt made from camel milk. Camel milk drinking yogurt was produced with 0, 0.42, 1.27, and 2.54 g/L of monk fruit sweetener and stored for 42 d. The physicochemical characteristics and microbiological counts of yogurts were measured at d 1, 7, 14, 21, 28, 35, and 42. For the physicochemical characteristics, pH, titratable acidity, viscosity, and color [lightness-darkness (L*), red-green axis (a*), yellow-blue axis (b*), chroma (C*), and hue angle (h*)] values were evaluated. The counts of Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus acidophilus, coliforms, and yeast and mold were determined. Three replications were conducted. The sweetener addition significantly influenced pH, viscosity, and color (a*, b*, C*, and h*) values. Control samples had significantly higher pH values, lower viscosity, lower b* and C* values, and higher h* values than the samples with 1.27 and 2.54 g/L of monk fruit sweetener. Growth of S. thermophilus, L. bulgaricus, and probiotic culture L. acidophilus was not affected by the incorporation of monk fruit sweetener. Monk fruit sweetener can be added in camel milk yogurts as a health-beneficial 0-calorie sweetener.


Subject(s)
Lactobacillus acidophilus/growth & development , Lactobacillus delbrueckii/growth & development , Milk/chemistry , Probiotics , Streptococcus thermophilus/growth & development , Sweetening Agents/chemistry , Yogurt/microbiology , Animals , Antioxidants/analysis , Camelus , Chemical Phenomena , Female , Fermentation , Fruit/chemistry , Yogurt/analysis
9.
Int J Mol Sci ; 21(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158240

ABSTRACT

Nut-based milks and yogurts are gaining popularity, but may not offer the same benefits as dairy yogurts to consumers. Cashew nuts often cause severe allergic reactions, and cashew nut allergens are stable to several types of processing. To compare its characteristics to dairy yogurt and characterize the effects of fermentation on the Ana o 1-3 cashew nut allergens, a commercial yogurt made from cashew nuts (Cashewgurt) was evaluated for microbiological, physiochemical, and immunological properties. Average counts for lactobacilli and Streptococcus thermophilus were greater than 10 million colony forming units per milliliter, indicating the capacity to provide a health benefit. Cashewgurt pH and viscosity values were comparable to cow milk yogurts, and it was off white in color. SDS-PAGE analysis indicated a clear reduction in Ana o 1 and 2, and immuno-assay with polyclonal anti-cashew IgG antibody and cashew-allergic IgE indicated an overall reduction in allergen content. In contrast, SDS-PAGE, mass spectrometry, immunoblot, and ELISA all revealed that Ana o 3 was relatively unaffected by the fermentation process. In conclusion, Ana o 1 and Ana o 2 are sensitive to degradation, while Ana o 3 survives lactic acid bacterial fermentation during yogurt production. The analysis presented here indicates that cashew nut yogurt is not suitable for those with cashew nut allergy.


Subject(s)
Allergens/analysis , Anacardium/chemistry , Yogurt/microbiology , Allergens/immunology , Amino Acid Sequence , Anacardium/immunology , Bacterial Load , Bifidobacterium/classification , Bifidobacterium/isolation & purification , Chemical Phenomena , Commerce , Enterobacteriaceae/classification , Enterobacteriaceae/isolation & purification , Food Analysis/methods , Food Hypersensitivity/immunology , Humans , Hydrogen-Ion Concentration , Lactobacillus/classification , Lactobacillus/isolation & purification , Nut Hypersensitivity/immunology , Nuts/immunology , Nuts/microbiology , Probiotics/analysis , Streptococcus thermophilus/classification , Streptococcus thermophilus/isolation & purification , Viscosity , Yogurt/analysis
10.
Am J Clin Nutr ; 108(3): 492-501, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30010698

ABSTRACT

Background: Type 2 resistant starch (RS2) has been shown to improve glycemic control and some cardiovascular endpoints in rodent and human studies. Objective: The aim of this study was to perform one of the first randomized clinical trials in adults with prediabetes and one of the longest trials to test whether RS2 can improve cardiometabolic health. Design: 68 overweight [body mass index (BMI) ≥27 kg/m2] adults aged 35-75 y with prediabetes were randomized to consume 45 g/d of high-amylose maize (RS2) or an isocaloric amount of the rapidly digestible starch amylopectin (control) for 12 wk. At baseline and postintervention, ectopic fat depots (visceral adipose tissue, intrahepatic lipids, and intramyocellular lipids) were measured by magnetic resonance imaging/spectroscopy, energy metabolism by respiratory chamber, and carbohydrate metabolism by glycated hemoglobin (HbA1c), an intravenous glucose tolerance test, and a meal tolerance test. Cardiovascular risk factors-serum lipids, blood pressure, heart rate, and inflammatory markers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6, and tumor necrosis factor [TNF]-α)-were also measured. The primary endpoints were insulin sensitivity, insulin secretion, ectopic fat, and markers of inflammation. Data were primarily analyzed as treatment effects via a linear mixed model both with and without the addition of covariates. Results: Relative to the control group, RS2 lowered HbA1c by a clinically insignificant 0.1 ± 0.2% (Δ = -1 ± 2 mmol/mol; P = 0.05) but did not affect insulin secretion, insulin sensitivity, the disposition index, or glucose or insulin areas under the curve relative to baseline (P ≥ 0.23). RS2 decreased heart rate by 5 ± 9 beats/min (P = 0.02) and TNF-α concentrations by 2.1 ± 2.7 pg/mL (P = 0.004), relative to the control group. Ectopic fat, energy expenditure, substrate oxidation, and all other cardiovascular risk factors were unaffected (P ≥ 0.06). Conclusions: 12 wk of supplementation with resistant starch reduced the inflammatory marker TNF-α and heart rate, but it did not significantly improve glycemic control and other cardiovascular disease risk factors, in adults with prediabetes. This trial was registered at clinicaltrials.gov as NCT01708694.


Subject(s)
Cardiovascular Diseases/prevention & control , Diabetic Cardiomyopathies/prevention & control , Metabolic Diseases/pathology , Prediabetic State/drug therapy , Starch/analogs & derivatives , Adult , Aged , Blood Glucose/analysis , Body Composition/drug effects , Double-Blind Method , Energy Metabolism , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Humans , Intra-Abdominal Fat/drug effects , Metabolic Diseases/etiology , Middle Aged , Placebos , Prediabetic State/blood , Resistant Starch , Risk Factors , Starch/administration & dosage , Starch/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL