Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(11): 105387, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36405775

ABSTRACT

Archaeological research shows that the dispersal of the Neolithic took a more complex turn when reaching western Europe, painting a contrasted picture of interactions between autochthonous hunter-gatherers (HGs) and incoming farmers. In order to clarify the mode, the intensity, and the regional variability of biological exchanges implied in these processes, we report new palaeogenomic data from Occitanie, a key region in Southern France. Genomic data from 28 individuals originating from six sites spanning from c. 5,500 to c. 2,500 BCE allow us to characterize regional patterns of ancestries throughout the Neolithic period. Results highlight major differences between the Mediterranean and Continental Neolithic expansion routes regarding both migration and interaction processes. High proportions of HG ancestry in both Early and Late Neolithic groups in Southern France support multiple pulses of inter-group gene flow throughout time and space and confirm the need for regional studies to address the complexity of the processes involved.

2.
iScience ; 25(4): 104094, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35402880

ABSTRACT

The Iron Age period occupies an important place in French history because the Gauls are regularly presented as the direct ancestors of the extant French population. We documented here the genomic diversity of Iron Age communities originating from six French regions. The 49 acquired genomes permitted us to highlight an absence of discontinuity between Bronze Age and Iron Age groups in France, lending support to a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. Genomic analyses revealed strong genetic homogeneity among the regional groups associated with distinct archaeological cultures. This genomic homogenization appears to be linked to individuals' mobility between regions and gene flow with neighbouring groups from England and Spain. Thus, the results globally support a common genomic legacy for the Iron Age population of modern-day France that could be linked to recurrent gene flow between culturally differentiated communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...