Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neural Circuits ; 16: 956201, 2022.
Article in English | MEDLINE | ID: mdl-36247727

ABSTRACT

Sensory signals are critical to perform adaptive social behavior. During copulation, male mice emit ultrasonic vocalizations (USVs). Our previous studies have shown that female mice exhibit approach behavior toward sound sources of male USVs and that, after being exposed to a male pheromone, exocrine gland-secreting peptide 1 (ESP1), female mice exhibited a preference toward a particular type of male USVs. These findings suggest that male USVs modulate female courtship behavior. However, it remains unclear which brain regions and what cell types of neurons are involved in neuronal processing of male USVs. To clarify this issue, immediate early gene analysis, behavioral analysis, and neurochemical analysis were performed. The in situ hybridization analysis of c-fos mRNA in multiple brain regions showed that neurons in the prelimbic cortex were responsive to presentation of male USVs in the presence of ESP1. Furthermore, this study found that activity of prelimbic cortex was correlated with the duration of female exploration behavior toward a sound source of the USVs. Finally, by using double immunohistochemistry, the present study showed that the prelimbic neurons responding to the presentation of male USVs were presumably excitatory glutamatergic neurons. These results suggest that the prelimbic cortex may facilitate female courtship behavior in response to male USVs.


Subject(s)
Ultrasonics , Vocalization, Animal , Animals , Female , Male , Mice , Pheromones , RNA, Messenger , Social Behavior , Vocalization, Animal/physiology
2.
Exp Anim ; 69(3): 319-325, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32101835

ABSTRACT

Male mice emit ultrasonic vocalizations (USVs) in response to the presence of female mice and their urine. Male USVs attract females, enhancing female reproductive functions, and are thus considered as the courtship song. Previous studies have shown that female mice exhibit disassortative social preferences for male USVs. However, it remains unclear what acoustic features female mice use for the development of these preferences. To address this, we examined social preferences of female C57BL/6 and BALB/c mice using the three-chamber preference test using recorded male USVs. To dissociate the peak frequencies of these USVs from their syllable structure, we digitally manipulated the peak frequencies accordingly. We found that female mice preferred USVs that were dissimilar to those of their own strain. We also observed that, while female C57BL/6 mice were sensitive to changes in the syllable structure and the peak frequency, female BALB/c mice were sensitive to differences in the syllable structure. Our results demonstrate that female C57BL/6 and BALB/c mice differently use the acoustic features such as the peak frequency and the syllable structure for exhibiting disassortative social preferences.


Subject(s)
Mice, Inbred BALB C/psychology , Mice, Inbred C57BL/psychology , Social Behavior , Vocalization, Animal , Animals , Female , Male
3.
Integr Zool ; 13(6): 735-744, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30019858

ABSTRACT

Acoustic signals are widely used as courtship signals in the animal kingdom. It has long been known that male mice emit ultrasonic vocalizations (USVs) in the presence of female mice or in response to female secretions. This observation led to the hypothesis that male USVs play a role in courtship behavior. Although previous studies showed that female mice have a social partner preference for vocalizing males, it is not known if they exhibit a sexual partner preference when given a choice. To address this issue, we examined the copulatory behaviors of female mice with either devocalized males (with or without the playback of the USVs) or sham-operated males in 2 different behavioral paradigms: the no-choice paradigm in the home cage of a male mouse (without choice of mating partners) or the mate-choice paradigm in a 3-chambered apparatus (with choice of mating partners). In the no-choice paradigm, female mice exhibited comparable sexual receptivity with sham-operated and devocalized males. In addition, we found that female mice showed more approach behavior towards devocalized males when male USVs were played back. In the mate-choice paradigm, female mice visited more frequently and stayed longer with sham-operated than devocalized males. Furthermore, we showed that female mice received more intromissions from sham-operated males than devocalized males. In summary, our results suggested that, although female mice can copulate equally with both devocalized and vocalizing males when given no choice of mating partner, female mice exhibit both sexual and social partner preferences for vocalizing males in the mate-choice paradigm.


Subject(s)
Mating Preference, Animal/physiology , Social Behavior , Vocalization, Animal , Animals , Female , Male , Mice , Mice, Inbred C57BL
4.
Horm Behav ; 94: 53-60, 2017 08.
Article in English | MEDLINE | ID: mdl-28645693

ABSTRACT

Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like "ultrasonic vocalizations (USVs)" when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4months and USVs syllables emitted from those paired males during 3min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons.


Subject(s)
Courtship , Hypothalamus , Kisspeptins/metabolism , Sexual Behavior, Animal/radiation effects , Ultrasonic Waves , Vocalization, Animal/physiology , Animals , Female , Hypothalamus/cytology , Hypothalamus/metabolism , Hypothalamus/radiation effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/metabolism , Neurons/radiation effects , Sexual Behavior, Animal/physiology
5.
J Vis Exp ; (103)2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26381885

ABSTRACT

Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference. First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts.


Subject(s)
Acoustic Stimulation/methods , Ultrasonics/methods , Vocalization, Animal/physiology , Acoustic Stimulation/instrumentation , Animals , Choice Behavior/physiology , Feedback, Sensory , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Ultrasonics/instrumentation
6.
Horm Behav ; 73: 131-4, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26193673

ABSTRACT

Group living has both benefits and costs to individuals; benefits include efficient acquisition of resources, and costs include stress from social conflicts among group members. Such social challenges result in hierarchical dominance ranking among group members as a solution to avoid escalating conflict that causes different levels of basal stress between individuals at different ranks. Stress-associated glucocorticoid (corticosterone in rodents and birds; CORT) levels are known to correlate with dominance rank in diverse taxa and to covary with various social factors, such as sex and dominance maintenance styles. Although there is much evidence for sex differences in the basal levels of CORT in various species, the correlation of sex differences in basal CORT with dominance rank is poorly understood. We investigated the correlation between CORT metabolites (CM) in the droppings and social factors, including rank and sex, in a captive non-breeder group of crows. In this group, all the single males dominated all the single females, and dominance ranks were stable among single males but relatively unstable among single females. CM levels and rank were significantly correlated in a sex-reversed fashion: males at higher rank (i.e., more dominant) had higher CM, whereas females at higher rank exhibited lower CM. This is the first evidence of sex-reversed patterns of CM-rank correlation in birds. The results suggest that different mechanisms of stress-dominance relationships operate on the sexes in non-breeder crow aggregations; in males, stress is associated with the cost of aggressive displays, whereas females experience subordination stress due to males' overt aggression.


Subject(s)
Crows/physiology , Social Dominance , Stress, Psychological , Aggression/physiology , Animal Husbandry , Animals , Behavior, Animal/physiology , Corticosterone/analysis , Corticosterone/metabolism , Crows/metabolism , Feces/chemistry , Female , Glucocorticoids/analysis , Glucocorticoids/metabolism , Male , Sex Characteristics , Sex Factors , Stress, Psychological/physiopathology , Stress, Psychological/psychology
7.
Proc Natl Acad Sci U S A ; 112(3): E311-20, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25564662

ABSTRACT

Most mammals have two major olfactory subsystems: the main olfactory system (MOS) and vomeronasal system (VNS). It is now widely accepted that the range of pheromones that control social behaviors are processed by both the VNS and the MOS. However, the functional contributions of each subsystem in social behavior remain unclear. To genetically dissociate the MOS and VNS functions, we established two conditional knockout mouse lines that led to either loss-of-function in the entire MOS or in the dorsal MOS. Mice with whole-MOS loss-of-function displayed severe defects in active sniffing and poor survival through the neonatal period. In contrast, when loss-of-function was confined to the dorsal MOB, sniffing behavior, pheromone recognition, and VNS activity were maintained. However, defects in a wide spectrum of social behaviors were observed: attraction to female urine and the accompanying ultrasonic vocalizations, chemoinvestigatory preference, aggression, maternal behaviors, and risk-assessment behaviors in response to an alarm pheromone. Functional dissociation of pheromone detection and pheromonal induction of behaviors showed the anterior olfactory nucleus (AON)-regulated social behaviors downstream from the MOS. Lesion analysis and neural activation mapping showed pheromonal activation in multiple amygdaloid and hypothalamic nuclei, important regions for the expression of social behavior, was dependent on MOS and AON functions. Identification of the MOS-AON-mediated pheromone pathway may provide insights into pheromone signaling in animals that do not possess a functional VNS, including humans.


Subject(s)
Behavior, Animal , Pheromones/physiology , Smell/physiology , Social Behavior , Animals , Avoidance Learning , Female , Male , Mice , Mice, Inbred C57BL
8.
Front Neurosci ; 8: 231, 2014.
Article in English | MEDLINE | ID: mdl-25140125

ABSTRACT

Male-female interaction is important for finding a suitable mating partner and for ensuring reproductive success. Male sexual signals such as pheromones transmit information and social and sexual status to females, and exert powerful effects on the mate preference and reproductive biology of females. Likewise, male vocalizations are attractive to females and enhance reproductive function in many animals. Interestingly, females' preference for male pheromones and vocalizations is associated with their genetic background, to avoid inbreeding. Moreover, based on acoustic cues, olfactory signals have significant effects on mate choice in mice, suggesting mate choice involves multisensory integration. In this review, we synopsize the effects of both olfactory and auditory cues on female behavior and neuroendocrine functions. We also discuss how these male signals are integrated and processed in the brain to regulate behavior and reproductive function.

9.
PLoS One ; 9(2): e87186, 2014.
Article in English | MEDLINE | ID: mdl-24505280

ABSTRACT

BACKGROUND: Sexual imprinting is important for kin recognition and for promoting outbreeding, and has been a driving force for evolution; however, little is known about sexual imprinting by auditory cues in mammals. Male mice emit song-like ultrasonic vocalizations that possess strain-specific characteristics. OBJECTIVES: In this study, we asked whether female mice imprint and prefer specific characteristics in male songs. METHODS AND FINDINGS: We used the two-choice test to determine the song preference of female C57BL/6 and BALB/c mice. By assessing the time engaged in searching behavior towards songs played back to females, we found that female mice displayed an innate preference for the songs of males from different strains. Moreover, this song preference was regulated by female reproductive status and by male sexual cues such as the pheromone ESP1. Finally, we revealed that this preference was reversed by cross-fostering and disappeared under fatherless conditions, indicating that the behavior was learned by exposure to the father's song. CONCLUSIONS: Our results suggest that female mice can discriminate among male song characteristics and prefer songs of mice from strains that are different from their parents, and that these preferences are based on their early social experiences. This is the first study in mammals to demonstrate that male songs contribute to kin recognition and mate choice by females, thus helping to avoid inbreeding and to facilitate offspring heterozygosity.


Subject(s)
Mating Preference, Animal/physiology , Social Behavior , Vocalization, Animal/physiology , Animals , Female , Male , Mice , Mice, Inbred BALB C , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL