Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Clin Pharmacol Toxicol ; 133(4): 364-377, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37394692

ABSTRACT

Adhesion G protein-coupled receptors (GPCRs) are an underrepresented class of GPCRs in drug discovery. We previously developed an in vivo drug screening pipeline to identify compounds with agonist activity for Adgrg6 (Gpr126), an adhesion GPCR required for myelination of the peripheral nervous system in vertebrates. The screening assay tests for rescue of an ear defect found in adgrg6tb233c-/- hypomorphic homozygous mutant zebrafish, using the expression of versican b (vcanb) mRNA as an easily identifiable phenotype. In the current study, we used the same assay to screen a commercially available library of 1280 diverse bioactive compounds (Sigma LOPAC). Comparison with published hits from two partially overlapping compound collections (Spectrum, Tocris) confirms that the screening assay is robust and reproducible. Using a modified counter screen for myelin basic protein (mbp) gene expression, we have identified 17 LOPAC compounds that can rescue both inner ear and myelination defects in adgrg6tb233c-/- hypomorphic mutants, three of which (ebastine, S-methylisothiourea hemisulfate, and thapsigargin) are new hits. A further 25 LOPAC hit compounds were effective at rescuing the otic vcanb expression but not mbp. Together, these and previously identified hits provide a wealth of starting material for the development of novel and specific pharmacological modulators of Adgrg6 receptor activity.


Subject(s)
Receptors, G-Protein-Coupled , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
2.
Genesis ; 59(4): e23417, 2021 04.
Article in English | MEDLINE | ID: mdl-33735533

ABSTRACT

Adhesion GPCRs are important regulators of conserved developmental processes and represent an untapped pool of potential targets for drug discovery. The adhesion GPCR Adgrg6 (Gpr126) has critical developmental roles in Schwann cell maturation and inner ear morphogenesis in the zebrafish embryo. Mutations in the human ADGRG6 gene can result in severe deficits in peripheral myelination, and variants have been associated with many other disease conditions. Here, we review work on the zebrafish Adgrg6 signaling pathway and its potential as a disease model. Recent advances have been made in the analysis of the structure of the Adgrg6 receptor, demonstrating alternative structural conformations and the presence of a conserved calcium-binding site within the CUB domain of the extracellular region that is critical for receptor function. Homozygous zebrafish adgrg6 hypomorphic mutants have been used successfully as a whole-animal screening platform, identifying candidate molecules that can influence signaling activity and rescue mutant phenotypes. These compounds offer promise for further development as small molecule modulators of Adgrg6 pathway activity.


Subject(s)
Arthrogryposis/genetics , Receptors, G-Protein-Coupled/metabolism , Zebrafish Proteins/metabolism , Animals , Arthrogryposis/metabolism , Disease Models, Animal , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Zebrafish , Zebrafish Proteins/genetics
3.
Elife ; 82019 06 10.
Article in English | MEDLINE | ID: mdl-31180326

ABSTRACT

Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design.


Subject(s)
Ear, Inner/metabolism , Myelin Sheath/metabolism , Peripheral Nervous System/metabolism , Receptors, G-Protein-Coupled/metabolism , Zebrafish Proteins/metabolism , Animals , Ear, Inner/drug effects , Ear, Inner/embryology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental/drug effects , Molecular Structure , Mutation , Myelin Sheath/drug effects , Peripheral Nervous System/drug effects , Proteoglycans/genetics , Proteoglycans/metabolism , Receptors, G-Protein-Coupled/genetics , Schwann Cells/drug effects , Schwann Cells/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...