Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 124(14): 2900-2913, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32017560

ABSTRACT

Dynamic and thermodynamic behaviors of associating fluids play a crucial role in various science and engineering disciplines. Cubic plus association equation of state (CPA EOS) is implemented in a central-moments-based lattice Boltzmann method (LBM) in order to mimic the thermodynamic behavior of associating fluids. The pseudopotential approach is selected to model the multiphase thermodynamic characteristics such as reduced density of associating fluids. The priority of central-moments-based approach over multiple-relaxation-time collision operator is highlighted by performing double shear layers. The integration of central-moments-based LBM and CPA EOS is useful to simulate the dynamic and thermodynamic characteristics of associating fluids at high flow rate conditions, which is extended to high-density ratio scenarios by increasing the anisotropy order of gradient operator. In order to increase the stability of the model, a higher anisotropy order of the gradient operator is implemented; about 34 present reduction in spurious velocities is noticed in some cases. The type of gradient operator considerably affects the model thermodynamic consistency. Finally, the model is validated by observing a straight line in the Laplace law test. Prediction of thermodynamic behaviors of associating fluids is of significance in various applications including biological processes as well as fluid flow in porous media.

2.
Phys Rev E ; 100(4-1): 043302, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770942

ABSTRACT

It is crucial to properly describe the associating fluids in terms of phase equilibrium behaviors, which are needed for design, operation, and optimization of various chemical and energy processes. Pseudopotential lattice Boltzmann method (LBM) appears to be a reliable and efficient approach to study thermodynamic behaviors and phase transition of complex fluid systems. However, when cubic equations of state (EOSs) are incorporated into single-component multiphase LBM, simulation results are not well matched with experimental data. This study presents the utilization of cubic-plus-association (CPA) EOS in the LBM structure to obtain more accurate modeling results for associating fluids. An approach based on the global search optimization algorithm is introduced to find the optimal association parameters of CPA EOS for water and primary alcohols in the lattice units. The thermodynamic consistency is verified by the Maxwell construction and is also improved by the forcing scheme of [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)10.1103/PhysRevE.86.016709]. The spurious velocity is reduced with increasing isotropy in the gradient operator. Furthermore, an extended version of CPA EOS is introduced, which increases the system stability at low reduced temperatures. There is a very good match between the LBM results and experimental data, confirming the reliability of the model developed in the present study. The introduced approach has potential to be employed for simulating transport phenomena and interfacial characteristics of associating fluids in porous systems.

SELECTION OF CITATIONS
SEARCH DETAIL