Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(13): 15773-15782, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526295

ABSTRACT

Chronic wound healing is often a prolonged process with the migration and proliferation of fibroblast cells playing crucial roles. Electrical stimulation (ES) has emerged as a promising physical therapy modality to promote these key events. In this study, we address this issue by employing a triboelectric nanogenerator (TENG) as an electrical stimulator for both drug release and the stimulation of fibroblast cells. The flexible TENG with a sandwich structure was fabricated using a PCL nanofibrous layer, Kapton, and silicon rubber. The TENG could be folded to any degree and twisted, and it could return to its original shape when the force was removed. Cultured cells received ES twice and three times daily for 8 days, with a 30 min interval between sessions. By applying current in a safe range and appropriate time (twice daily), fibroblasts demonstrate an accelerated proliferation and migration rate. These observations were confirmed through cell staining. Additionally, in vitro tests demonstrated the TENG's ability to simultaneously provide ES and release vitamin C from the patch. After 2 h, the amount of released drug increased 2 times in comparison to the control group. These findings provide support for the development of a TENG for the treatment of wounds, which underlines the promise of this new technique for developing portable electric stimulation devices.


Subject(s)
Ascorbic Acid , Fibroblasts , Humans , Drug Liberation , Electric Stimulation , Cell Proliferation
2.
Inflammopharmacology ; 32(1): 101-125, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062178

ABSTRACT

The management of acute and chronic wounds resulting from diverse injuries poses a significant challenge to clinical practices and healthcare providers. Wound healing is a complex biological process driven by a natural physiological response. This process involves four distinct phases, namely hemostasis, inflammation, proliferation, and remodeling. Despite numerous investigations on wound healing and wound dressing materials, complications still persist, necessitating more efficacious therapies. Wound-healing materials can be categorized into natural and synthetic groups. The current study aims to provide a comprehensive review of highly active natural animal and herbal agents as wound-healing promoters. To this end, we present an overview of in vitro, in vivo, and clinical studies that led to the discovery of potential therapeutic agents for wound healing. We further elucidated the effects of natural materials on various pharmacological pathways of wound healing. The results of previous investigations suggest that natural agents hold great promise as viable and accessible products for the treatment of diverse wound types.


Subject(s)
Inflammation , Wound Healing , Animals
3.
Biomater Adv ; 149: 213364, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996572

ABSTRACT

Skin wounds are common in accidental injuries, surgical operations, and chronic diseases. The migration and proliferation of fibroblast cells are fundamental to wound healing, which can be promoted by electrical stimulation as a physical therapy modality. Therefore, the development of portable electrical stimulation devices that can be used by patients on-site is an essential need. In the present study, a self-cleaning triboelectric nanogenerator (TENG) has been fabricated for enhancing cell proliferation and migration. The polycaprolactone­titanium dioxide (PCL/TiO2) and polydimethylsiloxane (PDMS) layers were fabricated via a facile method and used as the electropositive and electronegative pair, respectively. The effect of stimulation time on proliferation and migration of fibroblast cells was investigated. The results demonstrated that when the cells were stimulated once-a-day for 40 min, the cell viability was increased, while a long daily stimulation time has an inhibitory effect. Under electrical stimulation, the cells move toward the middle of the scratch, making the scratch almost invisible. During repeated movements, the prepared TENG connected to a rat skin generated an open-circuit voltage and a short-circuit current around 4 V and 0.2 µA, respectively. The proposed self-powered device can pave the way for a promising therapeutic strategy for patients with chronic wounds.


Subject(s)
Accidental Injuries , Skin , Animals , Rats , Fibroblasts , Wound Healing , Cell Proliferation
4.
Sci Rep ; 12(1): 15789, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138046

ABSTRACT

Considering the severe hazards of abnormal concentration level of H2S as an extremely toxic gas to the human body and due to the disability of olfactory system in sensing toxic level of H2S concentration, a reliable, sensitive, selective and rapid method for the detection of H2S is proposed and its efficacy is analyzed through simulation. The proposed system is based on the deflection of a laser beam in response to the temperature variations in its path. In order to provide selectivity and improve sensitivity, gold nanostructures were employed in the system. The selectivity was introduced based on the thiol-gold interactions and the sensitivity of the system was enhanced due to the modification of plasmon resonance behavior of gold nanostructures in response to gas adsorption. Results from our analysis demonstrate that compared with Au and SiO2-Au, the Au nanomatryoshka structures (Au-SiO2-Au) showed the highest sensitivity due to promoting higher deflections of the laser beam.


Subject(s)
Nanostructures , Silicon Dioxide , Gold/chemistry , Humans , Lasers , Nanostructures/chemistry , Sulfhydryl Compounds
5.
Sci Rep ; 12(1): 13411, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927441

ABSTRACT

Neurological disorders and nerve injuries, such as spinal cord injury, stroke, and multiple sclerosis can result in the loss of muscle function. Electrical stimulation of the neuronal cells is the currently available clinical treatment in this regard. As an effective energy harvester, the triboelectric nanogenerators (TENG) can be used for self-powered neural/muscle stimulations because the output of the TENG provides stimulation pulses for nerves. In the present study, using a computational modelling approach, the effect of surface micropatterns on the electric field distribution, induced voltage and capacitance of the TENG structures have been investigated. By incorporating the effect of the TENG inside the mathematical model of neuron's electrical behavior (cable equation with Hodgkin-Huxley model), its impact on the electrical behavior of the neurons has been studied. The results show that the TENG operates differently with various surface modifications. The performance of the TENG in excitation of neurons depends on the contact and release speed of its electrodes accordingly.


Subject(s)
Electric Power Supplies , Nanotechnology , Computer Simulation , Electricity , Nanotechnology/methods , Neurons
6.
Nanotechnology ; 33(47)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35977448

ABSTRACT

Self-sufficient power sources provide a promising application of abundant electronic devices utilized in detection of ambient properties. Recently, triboelectric nanogenerators (TENGs) have been widely investigated to broaden the self-powered systems by converting the ambient mechanical agitations into electrical voltage and current. Graphene oxide (GO), not only for sensing applications but also as a brilliant energy-related nanomaterial, provides a wide range of controllable bandgap energies, as well as facile synthesis route. In this study, GO-based self-powered photodetectors have been fabricated by conflating the photosensitivity and triboelectric characteristics of freestanding GO paper. In this regard, photodetection via TENGs has been investigated in two forms of active and passive circuits for ultraviolet (UV) and visible illumination. The photodetector responsivity upon UV enhanced from 0.011 mA W-1for conventional GO-photoresistors up to 13.41 mA W-1by active photodetection setup. Moreover, applying the active-TENG improved the efficiency from 0.25% (in passive TENG) to 4.21%. Our findings demonstrate that active TENGs might enable materials with insignificant optical response to represent considerably higher light-sensitivity by means of synergizing the effect of TENG output changes with opto-electronical properties of desired layers.

7.
ACS Appl Mater Interfaces ; 14(14): 16527-16537, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35373562

ABSTRACT

The fabrication of supported noble metal nanocrystals (NCs) with well-controlled morphologies have been attracted considerable interests due to their merits in a wide variety of applications. Photodeposition is a facile and effective method to load metals over semiconductors in a simple slurry reactor under irradiation. By optimizing the photodeposition process, the size, chemical states, and the geometrical distribution of metal NCs have been successfully tuned. However, metal NCs with well-controlled shapes through the photodeposition process have not been reported until now. Here, we report our important advances in the controlled photodeposition process to load regular noble metal NCs. Reduced graphene oxide (rGO) is introduced as a reservoir for the fast transfer of photoelectrons to avoid the fast accumulation of photogenerated electrons on the noble metals which makes the growth process uncontrollable. Meanwhile, rGO also provides stable surface for the controlled nucleation and oriented growth. Noble metal NCs with regular morphologies are then evenly deposited on rGO. This strategy has been demonstrated feasible for different precious metals (Pd, Au, and Pt) and semiconductors (TiO2, ZnO, ZrO2, CeO2, and g-C3N4). In the prototype application of electrochemical hydrogen evolution reaction, regular Pd NCs with enclosed {111} facets showed much better performance compared with that of irregular Pd NCs.

8.
Mikrochim Acta ; 188(8): 251, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34255212

ABSTRACT

A triboelectric nanogenerator (TENG) electrode sensitive to the adsorption of water molecules has been introduced to create a self-powered humidity sensor. Graphene oxide (GO) nanosheets and graphene oxide nanoribbon (GONR) possessing oxygenated functional groups, as well as high dielectric constants, have been proposed as appropriate candidates for this purpose. GO papers have been fabricated in three forms, i.e. pure  GO paper, uniform composites of GONR and GO, and double-layer structures of GONR on top of  GO. Results showed that all of the prepared paper-based TENGs revealed excellent performances by maximum output voltage above 300 V. As active humidity sensors, the maximum voltage response values of 57%, 124%, and 78% were obtained for GO, GONR+GO, and GONR/GO TENGs, respectively. Besides high sensitivity and precision of all variants, GO+GONR TENG demonstrated a rapid response/recovery behavior (0.3/0.5 s). This phenomenon can be attributed to the higher oxygenated groups and defects on the edges of GONR, which leads to facilitating the bulk diffusion of water molecules. Our results open new avenues of GONR application as an additive to enhance the performance of self-powered humidity sensors, as well as conventional hygrometers.

9.
Heliyon ; 7(4): e06914, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33997421

ABSTRACT

Metal-organic frameworks (MOFs) are a fascinating class of crystalline porous materials composed of metal ions and organic ligands. Due to their attractive properties, MOFs can potentially offer biomedical field applications, such as drug delivery and imaging. This study aimed to systematically identify the affecting factors on the MOF characteristics and their effects on structural and biological characteristics. An electronic search was performed in four databases containing PubMed, Scopus, Web of Science, and Embase, using the relevant keywords. After analyzing the studies, 20 eligible studies were included in this review. As a result, various factors such as additives and organic ligand can influence the size and structure of MOFs. Additives are materials that can compete with ligand and may affect the nucleation and growth processes and, consequently, particle size. The nature and structure of ligand are influential in determining the size and structure of MOF. Moreover, synthesis parameters like the reaction time and initial reagents ratio are critical factors that should be optimized to regulate the size and structure. Of note is that the nature of the ligand and using a suitable additive can control the porosity of MOF. The more extended ligands aid in forming large pores. The choice of metallic nodes and organic ligand, and the MOF concentration are important factors since they can determine toxicity and biocompatibility of the final structure. The physicochemical properties of MOFs, such as hydrophobicity, affect the toxicity of nanoparticles. An increase in hydrophobicity causes increased toxicity of MOF. The biodegradability of MOF, as another property, depends on the organic ligand and metal ion and environmental conditions like pH. Photocleavable ligands can be served for controlled degradation of MOFs. Generally, by optimizing these affecting factors, MOFs with desirable properties will be obtained for biomedical applications.

10.
Sci Rep ; 10(1): 14799, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32908162

ABSTRACT

Here in this research, room temperature ethanol and humidity sensors were prepared based on two dimensional (2D) hybrid nanostructures of tungsten di-sulfide (WS2) nanosheets and graphene oxide nanoribbons (GONRs) as GOWS. The characterization results based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (ESD), Raman spectroscopy and X-ray diffraction (XRD) analysis confirmed the hybrid formations. Ethanol sensing of drop-casted GOWS films on SiO2 substrate indicated increasing in gas response up to 5 and 55 times higher compared to pristine GONRs and WS2 films respectively. The sensing performance of GOWS hybrid nanostructures was investigated in different concentrations of WS2, and the highest response was about 126.5 at 1 ppm of ethanol in 40% relative humidity (R.H.) for WS2/GONRs molar ratio of 10. Flexibility of GOWS was studied on Kapton substrate with bending radius of 1 cm, and the gas response decreased less than 10% after 30th bending cycles. The high response and flexibility of the sensors inspired that GOWS are promising materials for fabrication of wearable gas sensing devices.

11.
Sci Rep ; 10(1): 7312, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355191

ABSTRACT

Triboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs. Outstanding power density as high as 1.3 W.m-2, an open-circuit voltage up to 870 V, and a current density of 1.4 µA.cm-2 has been extracted in vertical contact-separation mode. The all-flexible TENG has been employed as a self-powered humidity sensor to investigate the effect of raising humidity on the output voltage and current by applying mechanical agitation in two forms of using a tapping device and finger tapping. Due to the presence of superficial functional groups on the GO paper, water molecules are inclined to be adsorbed, resulting in a considerable reduction in both generated voltage (from 144 V to 14 V) and current (from 23 µA to 3.7 µA) within the range of relative humidity of 20% to 99%. These results provide a promising applicability of the first suggested sensitive self-powered GO TENG humidity sensor in portable/wearable electronics.

12.
Front Bioeng Biotechnol ; 8: 582713, 2020.
Article in English | MEDLINE | ID: mdl-33520951

ABSTRACT

Carbon nanotubes (CNTs) coatings have been shown over the past few years as a promising material for neural interface applications. In particular, in the field of nerve implants, CNTs have fundamental advantages due to their unique mechanical and electrical properties. In this study, carbon nanotubes multi-electrode arrays (CNT-modified-Au MEAs) were fabricated based on gold multi-electrode arrays (Au-MEAs). The electrochemical impedance spectra of CNT-modified-Au MEA and Au-MEA were compared employing equivalent circuit models. In comparison with Au-MEA (17 Ω), CNT-modified-Au MEA (8 Ω) lowered the overall impedance of the electrode at 1 kHz by 50%. The results showed that CNT-modified-Au MEAs have good properties such as low impedance, high stability and durability, as well as scratch resistance, which makes them appropriate for long-term application in neural interfaces.

13.
Infect Drug Resist ; 12: 2223-2235, 2019.
Article in English | MEDLINE | ID: mdl-31440064

ABSTRACT

BACKGROUND: P. aeruginosa is considered as one of the most important pathogens, and high antibiotic resistance to P. aeruginosa has become an alarming concern. This study attempts to further improve curcumin solubility and stability by producing the involved nanoparticle and investigate the effect of this nanoparticle on those virulence genes of P. aeruginosa in pathogenicity and biofilm formation. METHODS: In this study, the curcumin nanoparticles were synthesized and characterized, and the antibacterial and antibiofilm effects of Nano-curcumin and curcumin were investigated by microdilution broth and microtiter plate, respectively. In addition, cytotoxic effect of Nano-curcumin on human epithelial cell lines (A549) was determined. The effects of Nano-curcumin on P. aeruginosa virulence genes, mexD, mexB, and mexT (efflux pumps), lecA (adhesion), nfxB (negative regulator of MexCD-OprJ), and rsmZ (biofilm formation) were determined using real-time quantitative PCR. RESULTS: Synthesized Nano-curcumins were soluble in water, which inhibited the growth of multidrug-resistant (MDR) P. aeruginosa at 128 µg/mL, whereas it was inhibited at 256 µg/mL for soluble curcumin in DMSO. Sub-inhibitory concentrations of Nano-curcumin reduced biofilm formation and, at 64 µg/mL, disrupted 58% of the established bacterial biofilms. In addition, curcumin nanoparticle downregulated the transcription of virulence genes except nfxB and exerted no cytotoxic effect on human epithelial cell lines (A549). CONCLUSIONS: Results suggest that Nano-curcumin could be potentially used to reduce P. aeruginosa virulence and biofilm. However, in vivo studies with respect to an animal model are necessary to validate these results.

14.
J Colloid Interface Sci ; 537: 66-78, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30423490

ABSTRACT

In this research, adsorption and photocatalytic degradation process were utilized to remove organic dye from wastewater. To accomplish that, a newly-designed ternary nanostructure based on Ag nanoparticles/ZnO nanorods/three-dimensional graphene network (Ag NPs/ZnO NRs/3DG) was prepared using a combined hydrothermal-photodeposition method. The three-dimensional structure of graphene hydrogel as a support for growth of ZnO nanorods was characterized using field emission scanning electron microscopy (FESEM). In addition, diameter of silver nanoparticles grown on the ZnO nanorods with the average aspect ratio of 5 was determined in the range of 30-80 nm by using transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern was revealed hexagonal Wurtzite structure of ZnO nanorods and the (1 1 1) lattice plane of the face-centered cubic (FCC) of the silver nanoparticles. The dye adsorption capacity of the synthesized 3DG was evaluated at about 300 mg/g using kinetic study. The photocatalytic dye degradation under both UV and visible light irradiation exhibited an enhanced activity of the prepared ternary Ag/ZnO/3DG sample in comparison to ZnO/3DG and 3DG structures. Different charge-carrier scavengers were utilized to elucidate the synergistic effect of adsorption and visible-light photocatalytic degradation mechanism for dye removal. The facile photocatalyst recovery as well as the high elimination rate of dye is promising for future applications such as efficient removal of organic contaminants from industrial wastewater under solar irradiation.

15.
Mater Sci Eng C Mater Biol Appl ; 58: 1098-104, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478409

ABSTRACT

By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable decrease in its reduction overpotential. These results can be attributed to the incredible enlargement in the microscopic surface area of the electrode due to the presence of graphene nanosheets together with strong adsorption of Aza on its surface. The effect of experimental parameters such as accumulation time, the amount of modifier suspension and pH of the supporting electrolyte were also optimized toward obtaining the maximum sensitivity. Under the optimum conditions, the calibration curve studies demonstrated that the peak current increased linearly with Aza concentrations in the range of 7 × 10(-7) to 1 × 10(-4)mol L(-1) with the detection limit of 68 nM. Further experiments revealed that the modified electrode can be successfully applied for the accurate determination of Aza in pharmaceutical preparations.


Subject(s)
Azathioprine/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Silver/chemistry , Electrochemical Techniques , Electrodes , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...