Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran Biomed J ; 28(1): 31-7, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38468370

ABSTRACT

Background: Liver fibrosis, associated with hepatic stellate cells (HSCs), occurs when a healthy liver sustains damage, thereby impairing its function. NADPH oxidases (NOXs), specifically isoforms 1, 2, and 4, play a role in reactive oxygen species (ROS) production during hepatic injuries, resulting in fibrosis. Curcumin has shown strong potential in mitigating liver fibrosis. Our research aimed to investigate the effects of curcumin on lowering NOX and ROS levels. This compound was also studied for its effects on NOXs, ROS concentrations through the inhibition of Smad3 phosphorylation in transforming growth factor beta (TGF-ß)-activated human HSCs. Methods: MTT assay investigated the cytotoxic effects of curcumin on HSCs. The cells were activated by exposure to TGF-ß (2 ng/mL) for 24 hours. After activating, the cells were treated with curcumin at 25-150 µM concentrations. After administering curcumin to the cells, we employed RT-PCR and Western blot techniques to evaluate the related gene and protein expression levels. This evaluation was primarily focused on the mRNA expression levels of NOX1, NOX2, NOX4 and phosphorylated Smad3C. Results: The mRNA expression level of aforesaid NOXs as well as α-smooth muscle actin (α-SMA), collagen1-α, and ROS levels were significantly reduced following 100 µM curcumin treatment. Furthermore, curcumin significantly decreased the p-Smad3C protein level in TGF-ß-activated cells, with fold changes of 3 and 2 observed at 75 and 100 µM, respectively. Conclusion: Curcumin decreased the levels of ROS and NOX, as well as the expression of α-SMA and collagen1-α. The primary mechanism for this reduction could be linked to the level of p-Smad3C. Hence, curcumin could serve as an effective therapeutic agent for liver fibrosis.


Subject(s)
Curcumin , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Hepatic Stellate Cells/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Reactive Oxygen Species/metabolism , Signal Transduction , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Gene Expression , RNA, Messenger/metabolism
2.
Iran J Pharm Res ; 22(1): e134807, 2023.
Article in English | MEDLINE | ID: mdl-38116551

ABSTRACT

Background: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are 2 common liver diseases that currently lack effective treatment options. Objectives: This study aimed to investigate the effect of lipopolysaccharide (LPS)-stimulated adipose-derived stem cells (ADSCs) on NAFLD treatment in an animal model. Methods: Male Wistar rats were fed a high-fat diet (HFD) to induce NAFLD for 7 weeks. The rats were then categorized into 3 groups: Mesenchymal stem cell (MSC), MSC + LPS, and fenofibrate (FENO) groups. Liver and body weight were measured, and the expression of genes involved in fatty acid biosynthesis, ß-oxidation, and inflammatory responses was assessed. Results: Lipopolysaccharide-stimulated ADSCs were more effective in regulating liver and body weight gain and reducing liver triglyceride (TG) levels compared to the other groups. Treatment with LPS-stimulated ADSCs effectively corrected liver enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and lipid factors, including low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) values, better than treatment with both FENO and MSCs. ADSCs + LPS treatment significantly decreased transforming growth factor ß (TGF-ß) and genes associated with inflammatory responses. Additionally, there was a significant reduction in reactive oxygen species (ROS) levels in the rats treated with ADSCs + LPS. Conclusions: Lipopolysaccharide-stimulated ADSCs showed potential in alleviating NAFLD by reducing inflammatory genes and ROS levels in HFD rats, demonstrating better results than treatment with ADSCs and FENO groups alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...