Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 154: 528-536, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27085312

ABSTRACT

Malaysia, a rapidly growing industrial country, is susceptible to pollution via large-scale industrial engagements and associated human activities. One particular concern is the potential impact upon the quality of locally resourced vegetables, foodstuffs that contain important nutrients necessary for good health, forming an essential part of the Malaysian diet. As a part of this, it is of importance for there to be accurate knowledge of radioactive material uptake in these vegetables, not least in respect of any public health detriment. Herein, using HPGe γ-ray spectrometry, quantification has been performed of naturally occurring radionuclides in common edible vegetables and their associated soils. From samples analyses, the soil activity concentration ranges (in units of Bq/kg) for (226)Ra, (232)Th and (40)K were respectively 1.33-30.90, 0.48-26.80, 7.99-136.5 while in vegetable samples the ranges were 0.64-3.80, 0.21-6.91, 85.53-463.8. Using the corresponding activities, the transfer factors (TFs) from soil-to-vegetables were estimated, the transfers being greatest for (40)K, an expected outcome given the essentiality of this element in support of vigorous growth. The TFs of (226)Ra and (232)Th were found to be in accord with available literature data, the values indicating the mobility of these radionuclides to be low in the studied soils. Committed effective dose and the associated life-time cancer risk was estimated, being found to be below the permissible limit proposed by UNSCEAR. Results for the studied media show that the prevalent activities and mobilities pose no significant threat to human health, the edible vegetables being safe for consumption.


Subject(s)
Neoplasms, Radiation-Induced/epidemiology , Radiation Exposure/adverse effects , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Vegetables/chemistry , Diet , Food Analysis , Humans , Malaysia/epidemiology , Potassium Radioisotopes/analysis , Radiation Dosage , Radiation Monitoring , Radium/analysis , Spectrometry, Gamma , Thorium/analysis , Vegetables/radiation effects
2.
PLoS One ; 10(6): e0128790, 2015.
Article in English | MEDLINE | ID: mdl-26075909

ABSTRACT

The environment of the Straits of Malacca receives pollution as a result of various industrial and anthropogenic sources, making systematic studies crucial in determining the prevailing water quality. Present study concerns concentrations of natural radionuclides and heavy metals in marine fish (Rastrelliger kanagurta) collected from the Straits of Malacca, since aquatic stock form an important source of the daily diet of the surrounding populace. Assessment was made of the concentrations of key indicator radionuclides (226Ra, 232Th, 40K) and heavy metals (As, Mn, Fe, Cr, Ni, Zn, Cu, Co, Sr, Al, Hg and Pb) together with various radiation indices linked to the consumption of seafish. The annual effective dose for all detected radionuclides for all study locations has been found to be within UNSCEAR acceptable limits as has the associated life-time cancer risk. The overall contamination of the sampled fish from heavy metals was also found to be within limits of tolerance.


Subject(s)
Fishes , Food Contamination , Metals, Heavy , Radiation , Animals , Environmental Monitoring , Geography , Humans , Malaysia , Metals, Heavy/adverse effects , Metals, Heavy/analysis , Radioisotopes/chemistry , Risk
3.
Radiat Prot Dosimetry ; 167(1-3): 196-200, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25956784

ABSTRACT

Malaysia is among the countries with the highest fish consumption in the world and relies on seafood as a main source of animal protein. Thus, the radioactivity in the mostly consumed marine animals such as fishes, crustaceans and molluscs collected from the coastal waters around Peninsular Malaysia has been determined to monitor the level of human exposure by natural radiation via seafood consumption. The mean activity concentrations of naturally occurring radionuclides (226)Ra ((238)U), (228)Ra ((232)Th) and (40)K ranged from 0.67 ± 0.19 Bq kg(-1) (Perna viridis) to 1.20 ± 0.70 Bq kg(-1) (Rastrelliger), from 0.19 ± 0.17 Bq kg(-1) (Teuthida) to 0.82 ± 0.67 Bq kg(-1) (Caridea) and from 34 ± 13 Bq kg(-1) (Caridea) to 48 ± 24 Bq kg(-1) (Teuthida), respectively. The mean annual committed effective dose due to the individual radionuclides shows an order of (228)Ra > (226)Ra > (40)K in all marine samples. The obtained doses are less than the global internal dose of 290 µSv y(-1) set by the United Nations Scientific Committee on the Effects of Atomic Radiation, discarding any significant radiological risks to the populace of Peninsular Malaysia.


Subject(s)
Background Radiation , Fishes/metabolism , Radiation Exposure/analysis , Radioisotopes/pharmacokinetics , Seawater/chemistry , Water Pollutants, Chemical/pharmacokinetics , Animals , Body Burden , Geologic Sediments/chemistry , Malaysia , Radiation Dosage , Radiation Monitoring/methods , Radioisotopes/analysis , Water Pollutants, Chemical/analysis
4.
Radiat Prot Dosimetry ; 167(1-3): 165-70, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25935008

ABSTRACT

Vegetable is an essential daily diet item for the people of Malaysia. This work addressed the radiation and heavy metal exposure scenarios through the consumption of vegetables. Kuala Selangor is located in Sungai Selangor estuary in the west coast of Peninsular Malaysia, which is susceptible to pollution load due to the presence of large-scale industrial and human activities. Radioactivity and heavy metals level in human diet is of particular concern for the assessment of possible radiological and chemical hazards to human health. Therefore, a comprehensive study was carried out to determine the radioactivity levels ((226)Ra, (228)Ra and (40)K) and heavy metal concentrations (Cr, As, Cd, Mn, Mg, Al, Sr, Rb, Sb, Ba, Hg, Fe, Ni, Zn, Cu, Bi and Pb) in 10 varieties of vegetable collected from different farmlands in Kuala Selangor region. The committed doses for (226)Ra, (228)Ra and (40)K due to consumption of vegetables were found 16.6±1.3, 23.6±1.7 and 58±5 µSv y(-1), respectively, with a total of 98±8 µSv y(-1). This dose imposes no significant threat to human health. The estimated cancer risk shows that probability of increase in cancer risk from daily intake of vegetables is only a minor fraction of International Commission on Radiological Protection values. The concentrations of heavy metal were below the daily intake recommended by the international organisations.


Subject(s)
Diet/statistics & numerical data , Metals, Heavy/analysis , Neoplasms, Radiation-Induced/epidemiology , Radiation Exposure/statistics & numerical data , Radioisotopes/analysis , Vegetables/chemistry , Food Analysis/methods , Humans , Incidence , Malaysia/epidemiology , Radiation Monitoring/methods , Radiation Monitoring/statistics & numerical data , Reproducibility of Results , Risk Assessment , Sensitivity and Specificity
5.
J Environ Radioact ; 135: 120-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24814722

ABSTRACT

Soil-to-plant transfer factors (TFs) are of fundamental importance in assessing the environmental impact due to the presence of radioactivity in soil and agricultural crops. Tapioca and sweet potato, both root crops, are popular foodstuffs for a significant fraction of the Malaysian population, and result in intake of radionuclides. For the natural field conditions experienced in production of these foodstuffs, TFs and the annual effective dose were evaluated for the natural radionuclides (226)Ra, (232)Th, (40)K, and for the anthropogenic radionuclide (88)Y, the latter being a component of fallout. An experimental tapioca field was developed for study of the time dependence of plant uptake. For soil samples from all study locations other than the experimental field, it has been shown that these contain the artificial radionuclide (88)Y, although the uptake of (88)Y has only been observed in the roots of the plant Manihot esculenta (from which tapioca is derived) grown in mining soil. The estimated TFs for (226)Ra and (232)Th for tapioca and sweet potato are very much higher than that reported by the IAEA. For all study areas, the annual effective dose from ingestion of tapioca and sweet potato are estimated to be lower than the world average (290 µSv y(-1)).


Subject(s)
Plant Roots/metabolism , Soil Pollutants, Radioactive/metabolism , Vegetables/metabolism , Malaysia , Potassium Radioisotopes/metabolism , Radium/metabolism , Thorium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...