Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Microbiol ; 81(3): 80, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281302

ABSTRACT

Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.


Subject(s)
Aedes , Bacillus thuringiensis , Culex , Culicidae , Animals , Bacillus thuringiensis/metabolism , Culicidae/metabolism , Endotoxins/genetics , Endotoxins/toxicity , Endotoxins/chemistry , Bacillus thuringiensis Toxins , Amino Acid Sequence , Hemolysin Proteins/genetics , Hemolysin Proteins/toxicity , Larva , Cations/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Bacterial Proteins/chemistry
2.
Biology (Basel) ; 12(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38132307

ABSTRACT

Mpp46Ab is a mosquito-larvicidal pore-forming toxin derived from Bacillus thuringiensis TK-E6. Pore formation is believed to be a central mode of Mpp46Ab action, and the cation selectivity of the channel pores, in particular, is closely related to its mosquito-larvicidal activity. In the present study, we constructed a mutant library in which residue K155 within the transmembrane ß-hairpin was randomly replaced with other amino acid residues. Upon mutagenesis and following primary screening using Culex pipiens mosquito larvae, we obtained 15 mutants in addition to the wild-type toxin. Bioassays using purified proteins revealed that two mutants, K155E and K155I, exhibited toxicity significantly higher than that of the wild-type toxin. Although increased cation selectivity was previously reported for K155E channel pores, we demonstrated in the present study that the cation selectivity of K155I channel pores was also significantly increased. Considering the characteristics of the amino acids, the charge of residue 155 may not directly affect the cation selectivity of Mpp46Ab channel pores. Replacement of K155 with glutamic acid or isoleucine may induce a similar conformational change in the region associated with the ion selectivity of the Mpp46Ab channel pores. Mutagenesis targeting the transmembrane ß-hairpin may be an effective strategy for enhancing the ion permeability of the channel pores and the resulting mosquito-larvicidal activity of Mpp46Ab.

3.
Micromachines (Basel) ; 11(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271761

ABSTRACT

Ion channel proteins play important roles in various cell functions, making them attractive drug targets. Artificial lipid bilayer recording is a technique used to measure the ion transport activities of channel proteins with high sensitivity and accuracy. However, the measurement efficiency is low. In order to improve the efficiency, we developed a method that allows us to form bilayers on a hydrogel bead and record channel currents promptly. We tested our system by measuring the activities of various types of channels, including gramicidin, alamethicin, α-hemolysin, a voltage-dependent anion channel 1 (VDAC1), a voltage- and calcium-activated large conductance potassium channel (BK channel), and a potassium channel from Streptomyces lividans (KcsA channel). We confirmed the ability for enhanced measurement efficiency and measurement system miniaturizion.

4.
Appl Microbiol Biotechnol ; 104(20): 8789-8799, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32915257

ABSTRACT

Cry46Ab from Bacillus thuringiensis TK-E6 is a new mosquitocidal toxin with an aerolysin-type architecture, and it is expected to be used as a novel bioinsecticide. Cry46Ab acts as a functional pore-forming toxin, and characteristics of the resulting channel pores, including ion selectivity, have been analyzed. However, the relationship between channel-pore ion selectivity and insecticidal activity remains to be elucidated. To clarify the effects of charged amino acid residues on the ion permeability of channel-pores and the resulting insecticidal activity, in the present study, we constructed Cry46Ab mutants in which a charged amino acid residue within a putative transmembrane ß-hairpin region was replaced with an oppositely charged residue. Bioassays using Culex pipiens mosquito larvae revealed that the mosquitocidal activity was altered by the mutation. A K155E Cry46Ab mutant exhibited toxicity apparently higher than that of wild-type Cry46Ab, but the E159K and E163K mutants exhibited decreased toxicity. Ions selectivity measurements demonstrated that the channel pores formed by both wild-type and mutant Cry46Abs were cation selective, and their cation preference was also similar. However, the degree of cation selectivity was apparently higher in channel pores formed by the K155E mutant, and reduced selectivity was observed with the E159K and E163K mutants. Our data suggest that channel-pore cation selectivity is a major determinant of Cry46Ab mosquitocidal activity and that cation selectivity can be controlled via mutagenesis targeting the transmembrane ß-hairpin region. KEY POINTS: • Cry46Ab mutants were constructed by targeting the putative transmembrane ß-hairpin region. • Charged residues within the ß-hairpin control the flux of ions through channel pores. • Channel-pore cation selectivity is correlated with insecticidal activity.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Cations , Endotoxins , Hemolysin Proteins/genetics , Mutagenesis, Site-Directed
5.
Int J Mol Sci ; 19(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495404

ABSTRACT

We recently have established a successful xenograft model of human glioblastoma cells by enriching hyaluronic acid-dependent spheroid-forming populations termed U251MG-P1 cells from U251MG cells. Since U251MG-P1 cells have been confirmed to express CD44 along with principal stemness marker genes, OCT3/4, SOX2, KLF4 and Nanog, this CD44 expressing population appeared to majorly consist of undifferentiated cells. Evaluating the sensitivity to anti-cancer agents, we found U251MG-P1 cells were sensitive to doxorubicin with IC50 at 200 nM. Although doxorubicin has serious side-effects, establishment of an efficient therapy targeting undifferentiated glioblastoma cell population is necessary. We previously designed a chlorotoxin peptide fused to human IgG Fc region without hinge sequence (M-CTX-Fc), which exhibited a stronger growth inhibitory effect on the glioblastoma cell line A172 than an original chlorotoxin peptide. Combining these results together, we designed M-CTX-Fc conjugated liposomes encapsulating doxorubicin and used U251MG-P1 cells as the target model in this study. The liposome modified with M-CTX-Fc was designed with a diameter of approximately 100-150 nm and showed high encapsulation efficiency, adequate loading capacity of anticancer drug, enhanced antitumor effects demonstrating increasing uptake into the cells in vitro; M-CTX-Fc-L-Dox shows great promise in its ability to suppress tumor growth in vivo and it could serve as a template for targeted delivery of other therapeutics.


Subject(s)
Doxorubicin/analogs & derivatives , Glioblastoma/genetics , Hyaluronan Receptors/genetics , Recombinant Fusion Proteins , Scorpion Venoms/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Female , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Hyaluronan Receptors/metabolism , Immunoglobulin Fc Fragments , Immunoglobulin G , Inhibitory Concentration 50 , Kruppel-Like Factor 4 , Matrix Metalloproteinase 2 , Mice , Polyethylene Glycols/pharmacology , Xenograft Model Antitumor Assays
6.
Org Lett ; 7(7): 1211-4, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-15787469

ABSTRACT

[reaction: see text] A novel method for synthesizing 4-acetoxy-2-amino-3-arylbenzofurans (4) from 1-aryl-2-nitroethylenes (1) and cyclohexane-1,3-diones (2) is described. The method features one-pot operation of a solution of 1 and 2 in THF with catalytic Et3N (rt, 12 h) followed with Ac2O, Et3N, and DMAP (rt, 5 h), although the process consists of 13 elementary reactions.

SELECTION OF CITATIONS
SEARCH DETAIL