Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(2): 1406-1420, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38214909

ABSTRACT

Matrix metalloproteinase-7 (MMP-7) has been shown to play an important role in pathophysiological processes such as cancer and fibrosis. We previously discovered selective MMP-7 inhibitors by molecular hybridization and structure-based drug design. However, the systemic clearance (CLtot) of the biologically active lead compound was very high. Because our studies revealed that hepatic uptake by organic anion transporting polypeptide (OATP) was responsible for the high CLtot, we found a novel approach to reducing their uptake based on isoelectric point (IP) values as an indicator for substrate recognition by OATP1B1/1B3. Our "IP shift strategy" to adjust the IP values culminated in the discovery of TP0628103 (18), which is characterized by reduced in vitro OATP-mediated hepatic uptake and in vivo CLtot. Our in vitro-in vivo extrapolation of OATP-mediated clearance and the "IP shift strategy" provide crucial insights for a new medicinal chemistry approach to reducing the systemic clearance of OATP1B1/1B3 substrates.


Subject(s)
Matrix Metalloproteinase 7 , Organic Anion Transporters , Liver-Specific Organic Anion Transporter 1 , Isoelectric Point , Liver , Drug Interactions , Hepatocytes
2.
Bioorg Med Chem Lett ; 97: 129541, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37952596

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) is a secreted zinc-dependent endopeptidase that degrades the extracellular matrix and basement membrane of neurons, and then contributes to synaptic plasticity by remodeling the extracellular matrix. Inhibition of MMP-9 activity has therapeutic potential for neurodegenerative diseases such as fragile X syndrome. This paper reports the molecular design, synthesis, and in vitro studies of novel indole derivatives as inhibitors of proMMP-9 activation. High-throughput screening (HTS) of our internal compound library and subsequent merging of hit compounds 1 and 2 provided compound 4 as a bona-fide lead. X-ray structure-based design and subsequent lead optimization led to the discovery of compound 33, a highly potent and selective inhibitor of proMMP-9 activation.


Subject(s)
Enzyme Precursors , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 9/metabolism , Enzyme Precursors/metabolism , Extracellular Matrix/metabolism , Indoles/pharmacology , Indoles/metabolism , Metalloendopeptidases/metabolism , Matrix Metalloproteinase Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL