Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
PLoS One ; 19(2): e0298088, 2024.
Article in English | MEDLINE | ID: mdl-38335209

ABSTRACT

BACKGROUND: Malaria is a common and severe public health problem in Ghana and largely responsible for febrile symptoms presented at health facilities in the country. Other infectious diseases, including COVID-19, may mimic malaria due to their shared non-specific symptoms such as fever and headache thus leading to misdiagnosis. This study therefore investigated COVID-19 among patients presenting with malaria-like symptoms at Korle-Bu Polyclinic, Accra, Ghana. METHODS: This study enrolled 300 patients presenting with malaria-like symptoms aged ≥18yrs. After consent was obtained from study patients, two to three millilitres of whole blood, nasopharyngeal and oropharyngeal swab samples, were collected for screening of Plasmodium falciparum using malaria rapid diagnostic test, microscopy and nested PCR, and SARS-CoV-2 using SARS-CoV-2 antigen test and Real-time PCR, respectively. The plasma and whole blood were also used for COVID-19 antibody testing and full blood counts using hematological analyser. SARS-CoV-2 whole genome sequencing was performed using MinIon sequencing. RESULTS: The prevalence of malaria by microscopy, RDT and nested PCR were 2.3%, 2.3% and 2.7% respectively. The detection of SARS-CoV-2 by COVID-19 Rapid Antigen Test and Real-time PCR were 8.7% and 20% respectively. The Delta variant was reported in 23 of 25 SARS-CoV-2 positives with CT values below 30. Headache was the most common symptom presented by study participants (95%). Comorbidities reported were hypertension, asthma and diabetes. One hundred and thirteen (37.8%) of the study participants had prior exposure to SARS CoV-2 and (34/51) 66.7% of Astrazeneca vaccinated patients had no IgG antibody. CONCLUSION: It may be difficult to use clinical characteristics to distinguish between patients with COVID-19 having malaria-like symptoms. Detection of IgM using RDTs may be useful in predicting CT values for SARS-CoV-2 real-time PCR and therefore transmission.


Subject(s)
COVID-19 , Malaria , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Testing , Ghana/epidemiology , Malaria/diagnosis , Malaria/epidemiology , Real-Time Polymerase Chain Reaction , Headache , Primary Health Care , Sensitivity and Specificity
3.
Lancet Glob Health ; 11(7): e1075-e1085, 2023 07.
Article in English | MEDLINE | ID: mdl-37349034

ABSTRACT

BACKGROUND: Genomic surveillance of SARS-CoV-2 is crucial for monitoring the spread of COVID-19 and guiding public health decisions, but the capacity for SARS-CoV-2 testing and sequencing in Africa is low. We integrated SARS-CoV-2 surveillance into an existing influenza surveillance network with the aim of providing insights into SARS-CoV-2 transmission and genomics in Ghana. METHODS: In this molecular epidemiological analysis, which is part of a wider multifaceted prospective observational study, we collected national SARS-CoV-2 test data from 35 sites across 16 regions in Ghana from Sept 1, 2020, to Nov 30, 2021, via the Ghanaian integrated influenza and SARS-CoV-2 surveillance network. SARS-CoV-2-positive samples collected through this integrated national influenza surveillance network and from international travellers arriving in Accra were sequenced with Oxford Nanopore Technology sequencing and the ARTIC tiled amplicon method. The sequence lineages were typed with pangolin and the phylogenetic analysis was conducted with IQ-Tree2 and TreeTime. FINDINGS: During the study period, 5495 samples were submitted for diagnostic testing through the national influenza surveillance network (2121 [46·1%] of 4021 samples with complete demographic data were from female individuals and 2479 [53·9%] of 4021 samples were from male individuals). We also obtained 2289 samples from travellers who arrived in Accra and had a positive lateral flow test, of whom 1626 (71·0%, 95% CI 69·1-72·9) were confirmed to be SARS-CoV-2 positive. Co-circulation of influenza and SARS-CoV-2 in Ghana was detected, with increased cases of influenza in November, 2020, November, 2021, and January and June, 2021. In 4124 samples from individuals with influenza-like illness, SARS-CoV-2 was identified in 583 (14·1%, 95% CI 13·1-15·2) samples and influenza in 356 (8·6%, 7·8-9·5). Conversely, in 476 samples from individuals with of severe acute respiratory illness, SARS-CoV-2 was detected in 58 (12·2%, 9·5-15·5) samples and influenza in 95 (19·9%, 16·5-23·9). We detected four waves of SARS-CoV-2 infections in Ghana; each wave was driven by a different variant: B.1 and B.1.1 were the most prevalent lineages in wave 1, alpha (B.1.1.7) was responsible for wave 2, delta (B.1.617.2) and its sublineages (closely related to delta genomes from India) were responsible for wave 3, and omicron variants were responsible for wave 4. We detected omicron variants among 47 (32%) of 145 samples from travellers during the start of the omicron spread in Ghana (wave 4). INTERPRETATION: This study shows the value of repurposing existing influenza surveillance platforms to monitor SARS-CoV-2. Influenza continued to circulate in Ghana in 2020 and 2021, and remained a major cause of severe acute respiratory illness. We detected importations of SARS-CoV-2 variants into Ghana, including those that did or did not lead to onward community transmission. Investment in strengthening national influenza surveillance platforms in low-income and middle-income countries has potential for ongoing monitoring of SARS-CoV-2 and future pandemics. FUNDING: The EDCTP2 programme supported by the EU.


Subject(s)
COVID-19 , Influenza, Human , Female , Male , Humans , SARS-CoV-2/genetics , Ghana/epidemiology , Influenza, Human/diagnosis , Influenza, Human/epidemiology , COVID-19 Testing , Phylogeny , COVID-19/diagnosis , COVID-19/epidemiology , Genomics
4.
Front Public Health ; 11: 1290553, 2023.
Article in English | MEDLINE | ID: mdl-38292380

ABSTRACT

Introduction: The COVID-19 pandemic had a significant effect on influenza activity globally. In this study, we analyzed trends of influenza activity in 2020 during the COVID-19 pandemic in Ghana. Methods: This was a cross-sectional study using active prospective influenza surveillance data from 29 sentinel sites. At the sentinel sites, we enrolled patients presenting with symptoms based on the WHO case definition for influenza-like illness (ILI) and severe acute respiratory illness (SARI). Oro and nasopharyngeal swabs were collected from patients and tested for the presence of influenza viruses using specific primers and probes described by the US-CDC. The percentage of positivity for influenza between 2017-2019 and 2021 was compared to 2020. Using the test for proportions in STATA 17.0 we estimated the difference in influenza activities between two periods. Results and discussion: Influenza activity occurred in a single wave during the 2020 surveillance season into 2021, September 28 2020-March 7 2021 (week 40, 2020-week 9, 2021). Influenza activity in 2020 was significantly lower compared to previous years (2017- 2019, 2021). Influenza A (H3) was more commonly detected during the early part of the year (December 30, 2019-March 8, 2020), while influenza B Victoria was more commonly detected toward the end of the year (September 28-December 28). In Ghana, adherence to the community mitigation strategies introduced to reduce transmission of SARS-CoV-2, which affected the transmission of other infectious diseases, may have also impacted the transmission of influenza. To the best of our knowledge, this is the first study in Ghana to describe the effect of the COVID-19 pandemic on influenza activity. The continuation and strict adherence to the non-pharmaceutical interventions at the community level can help reduce influenza transmission in subsequent seasons.


Subject(s)
COVID-19 , Influenza, Human , Humans , Influenza, Human/epidemiology , Pandemics , Ghana/epidemiology , Cross-Sectional Studies , Prospective Studies , COVID-19/epidemiology , SARS-CoV-2
5.
Vet Med Sci ; 8(4): 1570-1577, 2022 07.
Article in English | MEDLINE | ID: mdl-35451231

ABSTRACT

INTRODUCTION: Avian influenza viruses (AIV) cause significant economic losses to poultry farmers worldwide. These viruses have the ability to spread rapidly, infect entire poultry flocks, and can pose a threat to human health. The National Influenza Centre (NIC) at the Noguchi Memorial Institute for Medical Research in collaboration with the Ghana Armed forces (GAF) and the U.S. Naval Medical Research Unit No. 3, Ghana Detachment (NAMRU-3) performs biannual surveillance for influenza viruses among poultry at military barracks throughout Ghana. This study presents poultry surveillance data from the years 2017 to 2019. METHODOLOGY: Tracheal and cloacal swabs from sick and healthy poultry were collected from the backyards of GAF personnel living quarters and transported at 4°C to the NIC. Viral ribonucleic acid (RNA) was isolated and analyzed for the presence of influenza viruses using real-time polymerase chain reaction (PCR) assays. Viral nucleic acids extracted from influenza A-positive specimens were sequenced using universal influenza A-specific primers. RESULTS: Influenza A H9N2 virus was detected in 11 avian species out of 2000 samples tested. Phylogenetic analysis of viral haemagglutinin (HA) protein confirms the possibility of importation of viruses from North Africa and Burkina Faso. Although the detected viruses possess molecular markers of virulence and mammalian host adaptation, the HA cleavage site anlaysis confirmed low pathogenicity of the viruses. CONCLUSIONS: These findings confirm the ongoing spread of H9 viruses among poultry in Ghana. Poultry farmers need to be vigilant for sick birds and take the appropriate public health steps to limit the spread to other animals and spillover to humans.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Phylogeny , Animals , Chickens/virology , Farms , Ghana/epidemiology , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Poultry/virology , Viral Proteins
6.
PLOS Glob Public Health ; 2(9): e0000502, 2022.
Article in English | MEDLINE | ID: mdl-36962513

ABSTRACT

Governments around the world have implemented non-pharmaceutical interventions to limit the transmission of COVID-19. Here we assess if increasing NPI stringency was associated with a reduction in COVID-19 cases in Ghana. While lockdowns and physical distancing have proven effective for reducing COVID-19 transmission, there is still limited understanding of how NPI measures are reflected in indicators of human mobility. Further, there is a lack of understanding about how findings from high-income settings correspond to low and middle-income contexts. In this study, we assess the relationship between indicators of human mobility, NPIs, and estimates of Rt, a real-time measure of the intensity of COVID-19 transmission. We construct a multilevel generalised linear mixed model, combining local disease surveillance data from subnational districts of Ghana with the timing of NPIs and indicators of human mobility from Google and Vodafone Ghana. We observe a relationship between reductions in human mobility and decreases in Rt during the early stages of the COVID-19 epidemic in Ghana. We find that the strength of this relationship varies through time, decreasing after the most stringent period of interventions in the early epidemic. Our findings demonstrate how the association of NPI and mobility indicators with COVID-19 transmission may vary through time. Further, we demonstrate the utility of combining local disease surveillance data with large scale human mobility data to augment existing surveillance capacity to monitor the impact of NPI policies.

7.
PLOS Glob Public Health ; 2(12): e0001104, 2022.
Article in English | MEDLINE | ID: mdl-36962878

ABSTRACT

Influenza virus is an important contributor to acute respiratory illnesses and is estimated to cause up to 650,000 respiratory deaths each year. Ghana recorded influenza viruses as far back as 1918 when the Spanish influenza pandemic led to the death of >100,000 people in a population of 4 million at the time. An outbreak of highly pathogenic avian influenza A(H5N1) among poultry in Ghana in 2007, led to the establishment of virological surveillance for influenza-like illness (ILI) by the Noguchi Memorial Institute for Medical Research (NMIMR). This surveillance system, supported by the U.S. Naval Medical Research Unit-No. 3 (NAMRU-3) and the Ghana Health Service (GHS), monitors circulating influenza strains and activity to better understand the epidemiology of influenza in Ghana. We present here the results of this surveillance system from 2011 to 2019. As part of the Integrated Disease Surveillance and Response (IDSR) system of the GHS under the Ministry of Health (MOH), oropharyngeal and nasopharyngeal swabs were collected from patients who met a modified World Health Organization (WHO) case definition for ILI or severe acute respiratory illness (SARI) through a sentinel surveillance system in the country. Samples were transported to the National Influenza Centre (NIC) at the NMIMR and tested for influenza virus using protocols defined by the United States Centers for Disease Control and Prevention (CDC). Selected isolates were sent to the WHO collaborating centre in the United Kingdom for further antigenic characterization. From 2011 to 2019, the NIC tested a total of 21,747 ILI samples and 3,429 SARI samples. Influenza positivity rates were highest in the 5-14 year old group for both ILI (20.8%) and SARI (23.8%). Compared to females, more males were seen at the health facilities for ILI and SARI symptoms with a statistically significant difference in influenza positive ILI (15% vs 13.2%, p <0.001). In terms of absolute numbers, more cases were seen at the health centres during the wet seasons (April to October) compared to the dry seasons (November to March) in Ghana. This study presents 9 years of surveillance data from outpatient and inpatient setting on influenza activity as well as the influenza A subtypes and B lineages that drive the activity. This presents useful information for influenza vaccine selection and administration. Ghana's unique influenza activity patterns also present a challenge in predicting when an outbreak could occur.

8.
Nat Microbiol ; 3(10): 1161-1174, 2018 10.
Article in English | MEDLINE | ID: mdl-30202017

ABSTRACT

Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in ~1% of affected newborns. Here, we investigate whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal death, as expected. By contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less likely to survive in utero infection compared to their female littermates. Males also presented an increased number of immature neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. Moreover, male offspring with high but not very high (storm) TST levels were more likely to suffer from learning and memory impairments compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where impaired neurodevelopment may be camouflaged by a healthy appearance at birth.


Subject(s)
Neurocognitive Disorders/etiology , Pregnancy Complications, Infectious , Zika Virus Infection/complications , Zika Virus , Animals , Animals, Newborn , Brain/pathology , Disease Models, Animal , Female , Humans , Infectious Disease Transmission, Vertical , Learning Disabilities/etiology , Male , Neurocognitive Disorders/pathology , Neurocognitive Disorders/physiopathology , Placental Insufficiency , Pregnancy , Sex Factors , Testosterone/blood , Zika Virus Infection/transmission
SELECTION OF CITATIONS
SEARCH DETAIL