Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Ophthalmol Glaucoma ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723778

ABSTRACT

OBJECTIVE: Excessive dietary sodium intake has known adverse effects on intravascular fluid volume and systemic blood pressure, which may influence intraocular pressure (IOP) and glaucoma risk. This study aimed to assess the association of urinary sodium excretion, a biomarker of dietary intake, with glaucoma and related traits, and to determine whether this relationship is modified by genetic susceptibility to disease. DESIGN: Cross-sectional observational and gene-environment interaction analyses in the population-based UK Biobank study. PARTICIPANTS: Up to 103 634 individuals (mean age 57 years, 51% women) with complete urinary, ocular, and covariable data. METHODS: Urine sodium:creatinine ratio (UNa:Cr; mmol:mmol) was calculated from a midstream urine sample. Ocular parameters were measured as part of a comprehensive eye examination and glaucoma case ascertainment was through a combination of self-report and linked national hospital records. Genetic susceptibility to glaucoma was calculated based on a glaucoma polygenic risk score (PRS) comprising 2 673 common genetic variants. Multivariable linear and logistic regression, adjusted for key sociodemographic, medical, anthropometric, and lifestyle factors, were used to model associations and gene-environment interactions. MAIN OUTCOME MEASURES: Corneal-compensated IOP, optical coherence tomography derived macular retinal nerve fiber layer (mRNFL) and ganglion cell-inner plexiform layer (GCIPL) thickness, and prevalent glaucoma. RESULTS: In maximally adjusted regression models, a one standard deviation increase in UNa:Cr was associated with higher IOP (0.14mmHg; 95% CI, 0.12 to 0.17; P<0.001) and greater prevalence of glaucoma (OR, 1.11; 95% CI, 1.07 to 1.14; P<0.001), but not mRNFL or GCIPL thickness. Compared to those with UNa:Cr in the lowest quintile, those in the highest quintile had significantly higher IOP (0.45mmHg; 95% CI, 0.36 to 0.53, P<0.001) and prevalence of glaucoma (OR, 1.30; 95% CI, 1.17 to 1.45; P<0.001). Stronger associations with glaucoma (P interaction=0.001) were noted in participants with a higher glaucoma PRS. CONCLUSIONS: Urinary sodium excretion, a biomarker of dietary intake, may represent an important modifiable risk factor for glaucoma, especially in individuals at high underlying genetic risk. These findings warrant further investigation as they may have important clinical and public health implications.

2.
BMC Genomics ; 25(1): 375, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627641

ABSTRACT

BACKGROUND: Approximately 95% of samples analyzed in univariate genome-wide association studies (GWAS) are of European ancestry. This bias toward European ancestry populations in association screening also exists for other analyses and methods that are often developed and tested on European ancestry only. However, existing data in non-European populations, which are often of modest sample size, could benefit from innovative approaches as recently illustrated in the context of polygenic risk scores. METHODS: Here, we extend and assess the potential limitations and gains of our multi-trait GWAS pipeline, JASS (Joint Analysis of Summary Statistics), for the analysis of non-European ancestries. To this end, we conducted the joint GWAS of 19 hematological traits and glycemic traits across five ancestries (European (EUR), admixed American (AMR), African (AFR), East Asian (EAS), and South-East Asian (SAS)). RESULTS: We detected 367 new genome-wide significant associations in non-European populations (15 in Admixed American (AMR), 72 in African (AFR) and 280 in East Asian (EAS)). New associations detected represent 5%, 17% and 13% of associations in the AFR, AMR and EAS populations, respectively. Overall, multi-trait testing increases the replication of European associated loci in non-European ancestry by 15%. Pleiotropic effects were highly similar at significant loci across ancestries (e.g. the mean correlation between multi-trait genetic effects of EUR and EAS ancestries was 0.88). For hematological traits, strong discrepancies in multi-trait genetic effects are tied to known evolutionary divergences: the ARKC1 loci, which is adaptive to overcome p.vivax induced malaria. CONCLUSIONS: Multi-trait GWAS can be a valuable tool to narrow the genetic knowledge gap between European and non-European populations.


Subject(s)
Asian People , Black People , Genome-Wide Association Study , Humans , Asian People/genetics , Black People/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Phenotype , Polymorphism, Single Nucleotide , European People/genetics
3.
Nat Commun ; 15(1): 3385, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649715

ABSTRACT

There is a long-standing debate about the magnitude of the contribution of gene-environment interactions to phenotypic variations of complex traits owing to the low statistical power and few reported interactions to date. To address this issue, the Gene-Lifestyle Interactions Working Group within the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium has been spearheading efforts to investigate G × E in large and diverse samples through meta-analysis. Here, we present a powerful new approach to screen for interactions across the genome, an approach that shares substantial similarity to the Mendelian randomization framework. We identify and confirm 5 loci (6 independent signals) interacted with either cigarette smoking or alcohol consumption for serum lipids, and empirically demonstrate that interaction and mediation are the major contributors to genetic effect size heterogeneity across populations. The estimated lower bound of the interaction and environmentally mediated heritability is significant (P < 0.02) for low-density lipoprotein cholesterol and triglycerides in Cross-Population data. Our study improves the understanding of the genetic architecture and environmental contributions to complex traits.


Subject(s)
Gene-Environment Interaction , Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Male , Triglycerides/blood , Female , Alcohol Drinking/genetics , Polymorphism, Single Nucleotide , Phenotype , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Cigarette Smoking/genetics , Quantitative Trait Loci , Middle Aged
4.
medRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496537

ABSTRACT

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.

5.
medRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38313294

ABSTRACT

Large-scale gene-environment interaction (GxE) discovery efforts often involve compromises in the definition of outcomes and choice of covariates for the sake of data harmonization and statistical power. Consequently, refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C). This GxE was originally identified by Kilpeläinen et al., with the strongest cohort-specific signal coming from the Women's Genome Health Study (WGHS). We thus explored this GxE further in the WGHS (N = 23,294), with follow-up in the UK Biobank (UKB; N = 281,380), and the Multi-Ethnic Study of Atherosclerosis (MESA; N = 4,587). Self-reported PA (MET-hrs/wk), genotypes at rs295849 (nearest gene: LHX1), and NMR metabolomics data were available in all three cohorts. As originally reported, minor allele carriers of rs295849 in WGHS had a stronger positive association between PA and HDL-C (pint = 0.002). When testing a range of NMR metabolites (primarily lipoprotein and lipid subfractions) to refine the HDL-C outcome, we found a stronger interaction effect on medium-sized HDL particle concentrations (M-HDL-P; pint = 1.0×10-4) than HDL-C. Meta-regression revealed a systematically larger interaction effect in cohorts from the original meta-analysis with a greater fraction of women (p = 0.018). In the UKB, GxE effects were stronger both in women and using M-HDL-P as the outcome. In MESA, the primary interaction for HDL-C showed nominal significance (pint = 0.013), but without clear differences by sex and with a greater magnitude using large, rather than medium, HDL-P as an outcome. Towards reconciling these observations, further exploration leveraging NMR platform-specific HDL subfraction diameter annotations revealed modest agreement across all cohorts in the interaction affecting medium-to-large particles. Taken together, our work provides additional insights into a specific known gene-PA interaction while illustrating the importance of phenotype and model refinement towards understanding and replicating GxEs.

6.
Bioinform Adv ; 4(1): vbad188, 2024.
Article in English | MEDLINE | ID: mdl-38213821

ABSTRACT

Motivation: Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with common diseases. These results include a mix of causal and non-causal variants related through strong linkage disequilibrium (LD, i.e. highly correlated). Fine-mapping methods have been developed to decipher the causal from non-causal variants using GWAS results and LD information, assigning to each variant a probability of being causal. In this field, the PAINTOR program has become a standard, one of its advantages being its ability to take into account functional annotations. This approach requires many pre- and post-processing steps. Here, we developed a Nextflow pipeline called PaintorPipe that wraps all these steps and the fine-mapping itself together. PaintorPipe uses three independent sources of information: GWAS summary statistics, LD information and functional annotations, to rank the variants according to their susceptibility to be involved in the disease development. The PAINTOR framework is used to calculate the posterior probability of each variant (single nucleotide polymorphism) to be causal (a.k.a. Bayesian fine-mapping). The resulting credible sets of variants are annotated with their biological functions and visualized using CANVIS. This pipeline requires minimal input from users (a GWAS summary statistics file and a set of functional annotation files) and is designed to be modular and customizable, allowing for an easy integration of diverse functional annotations. Availability and implementation: PaintorPipe is implemented in the Nextflow pipeline specific language, can be run locally or on a slurm cluster and handles containerization using Singularity. PaintorPipe is freely available on GitHub (https://github.com/sdjebali/PaintorPipe).

7.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961722

ABSTRACT

Since the first Genome-Wide Association Studies (GWAS), thousands of variant-trait associations have been discovered. However, the sample size required to detect additional variants using standard univariate association screening is increasingly prohibitive. Multi-trait GWAS offers a relevant alternative: it can improve statistical power and lead to new insights about gene function and the joint genetic architecture of human phenotypes. Although many methodological hurdles of multi-trait testing have been discussed, the strategy to select trait, among overwhelming possibilities, has been overlooked. In this study, we conducted extensive multi-trait tests using JASS (Joint Analysis of Summary Statistics) and assessed which genetic features of the analysed sets were associated with an increased detection of variants as compared to univariate screening. Our analyses identified multiple factors associated with the gain in the association detection in multi-trait tests. Together, these factors of the analysed sets are predictive of the gain of the multi-trait test (Pearson's ρ equal to 0.43 between the observed and predicted gain, P < 1.6 × 10-60). Applying an alternative multi-trait approach (MTAG, multi-trait analysis of GWAS), we found that in most scenarios but particularly those with larger numbers of traits, JASS outperformed MTAG. Finally, we benchmark several strategies to select set of traits including the prevalent strategy of selecting clinically similar traits, which systematically underperformed selecting clinically heterogenous traits or selecting sets that issued from our data-driven models. This work provides a unique picture of the determinant of multi-trait GWAS statistical power and outline practical strategies for multi-trait testing.

8.
Res Sq ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37886448

ABSTRACT

There is a long-standing debate about the magnitude of the contribution of gene-environment interactions to phenotypic variations of complex traits owing to the low statistical power and few reported interactions to date. To address this issue, the CHARGE Gene-Lifestyle Interactions Working Group has been spearheading efforts to investigate G×E in large and diverse samples through meta-analysis. Here, we present a powerful new approach to screen for interactions across the genome, an approach that shares substantial similarity to the Mendelian randomization framework. We identified and confirmed 5 loci (6 independent signals) interacting with either cigarette smoking or alcohol consumption for serum lipids, and empirically demonstrated that interaction and mediation are the major contributors to genetic effect size heterogeneity across populations. The estimated lower bound of the interaction and environmentally mediated contribution ranges from 1.76% to 14.05% of SNP heritability of serum lipids in Cross-Population data. Our study improves the understanding of the genetic architecture and environmental contributions to complex traits.

9.
Nat Commun ; 14(1): 4702, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543680

ABSTRACT

The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Genome-Wide Association Study , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Phenotype , Multifactorial Inheritance/genetics
10.
J Allergy Clin Immunol ; 152(6): 1423-1432, 2023 12.
Article in English | MEDLINE | ID: mdl-37595761

ABSTRACT

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) have distinct and overlapping genetic and clinical features. OBJECTIVE: We sought to test the hypothesis that polygenic risk scores (PRSs) for asthma (PRSAsthma) and spirometry (FEV1 and FEV1/forced vital capacity; PRSspiro) would demonstrate differential associations with asthma, COPD, and asthma-COPD overlap (ACO). METHODS: We developed and tested 2 asthma PRSs and applied the higher performing PRSAsthma and a previously published PRSspiro to research (Genetic Epidemiology of COPD study and Childhood Asthma Management Program, with spirometry) and electronic health record-based (Mass General Brigham Biobank and Genetic Epidemiology Research on Adult Health and Aging [GERA]) studies. We assessed the association of PRSs with COPD and asthma using modified random-effects and binary-effects meta-analyses, and ACO and asthma exacerbations in specific cohorts. Models were adjusted for confounders and genetic ancestry. RESULTS: In meta-analyses of 102,477 participants, the PRSAsthma (odds ratio [OR] per SD, 1.16 [95% CI, 1.14-1.19]) and PRSspiro (OR per SD, 1.19 [95% CI, 1.17-1.22]) both predicted asthma, whereas the PRSspiro predicted COPD (OR per SD, 1.25 [95% CI, 1.21-1.30]). However, results differed by cohort. The PRSspiro was not associated with COPD in GERA and Mass General Brigham Biobank. In the Genetic Epidemiology of COPD study, the PRSAsthma (OR per SD: Whites, 1.3; African Americans, 1.2) and PRSspiro (OR per SD: Whites, 2.2; African Americans, 1.6) were both associated with ACO. In GERA, the PRSAsthma was associated with asthma exacerbations (OR, 1.18) in Whites; the PRSspiro was associated with asthma exacerbations in White, LatinX, and East Asian participants. CONCLUSIONS: PRSs for asthma and spirometry are both associated with ACO and asthma exacerbations. Genetic prediction performance differs in research versus electronic health record-based cohorts.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Child , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Asthma/epidemiology , Asthma/genetics , Vital Capacity , Respiratory Function Tests , Forced Expiratory Volume
11.
Ophthalmology ; 130(10): 1024-1036, 2023 10.
Article in English | MEDLINE | ID: mdl-37331483

ABSTRACT

PURPOSE: To examine the association of physical activity (PA) with glaucoma and related traits, to assess whether genetic predisposition to glaucoma modified these associations, and to probe causal relationships using Mendelian randomization (MR). DESIGN: Cross-sectional observational and gene-environment interaction analyses in the UK Biobank. Two-sample MR experiments using summary statistics from large genetic consortia. PARTICIPANTS: UK Biobank participants with data on self-reported or accelerometer-derived PA and intraocular pressure (IOP; n = 94 206 and n = 27 777, respectively), macular inner retinal OCT measurements (n = 36 274 and n = 9991, respectively), and glaucoma status (n = 86 803 and n = 23 556, respectively). METHODS: We evaluated multivariable-adjusted associations of self-reported (International Physical Activity Questionnaire) and accelerometer-derived PA with IOP and macular inner retinal OCT parameters using linear regression and with glaucoma status using logistic regression. For all outcomes, we examined gene-PA interactions using a polygenic risk score (PRS) that combined the effects of 2673 genetic variants associated with glaucoma. MAIN OUTCOME MEASURES: Intraocular pressure, macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and glaucoma status. RESULTS: In multivariable-adjusted regression models, we found no association of PA level or time spent in PA with glaucoma status. Higher overall levels and greater time spent in higher levels of both self-reported and accelerometer-derived PA were associated positively with thicker mGCIPL (P < 0.001 for trend for each). Compared with the lowest quartile of PA, participants in the highest quartiles of accelerometer-derived moderate- and vigorous-intensity PA showed a thicker mGCIPL by +0.57 µm (P < 0.001) and +0.42 µm (P = 0.005). No association was found with mRNFL thickness. High overall level of self-reported PA was associated with a modestly higher IOP of +0.08 mmHg (P = 0.01), but this was not replicated in the accelerometry data. No associations were modified by a glaucoma PRS, and MR analyses did not support a causal relationship between PA and any glaucoma-related outcome. CONCLUSIONS: Higher overall PA level and greater time spent in moderate and vigorous PA were not associated with glaucoma status but were associated with thicker mGCIPL. Associations with IOP were modest and inconsistent. Despite the well-documented acute reduction in IOP after PA, we found no evidence that high levels of habitual PA are associated with glaucoma status or IOP in the general population. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Glaucoma , Macula Lutea , Humans , Biological Specimen Banks , Cross-Sectional Studies , Glaucoma/genetics , Intraocular Pressure , Retinal Ganglion Cells , Tomography, Optical Coherence , United Kingdom/epidemiology , Mendelian Randomization Analysis
12.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333162

ABSTRACT

Genome-wide association studies (GWAS) for biomarkers important for clinical phenotypes can lead to clinically relevant discoveries. GWAS for quantitative traits are based on simplified regression models modeling the conditional mean of a phenotype as a linear function of genotype. An alternative and easy to apply approach is quantile regression that naturally extends linear regression to the analysis of the entire conditional distribution of a phenotype of interest by modeling conditional quantiles within a regression framework. Quantile regression can be applied efficiently at biobank scale using standard statistical packages in much the same way as linear regression, while having some unique advantages such as identifying variants with heterogeneous effects across different quantiles, including non-additive effects and variants involved in gene-environment interactions; accommodating a wide range of phenotype distributions with invariance to trait transformation; and overall providing more detailed information about the underlying genotype-phenotype associations. Here, we demonstrate the value of quantile regression in the context of GWAS by applying it to 39 quantitative traits in the UK Biobank (n>300,000 individuals). Across these 39 traits we identify 7,297 significant loci, including 259 loci only detected by quantile regression. We show that quantile regression can help uncover replicable but unmodelled gene-environment interactions, and can provide additional key insights into poorly understood genotype-phenotype correlations for clinically relevant biomarkers at minimal additional cost.

13.
medRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865145

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) has a simple physiological diagnostic criterion but a wide range of clinical characteristics. The mechanisms underlying this variability in COPD phenotypes are unclear. To investigate the potential contribution of genetic variants to phenotypic heterogeneity, we examined the association of genome-wide associated lung function, COPD, and asthma variants with other phenotypes using phenome-wide association results derived in the UK Biobank. Our clustering analysis of the variants-phenotypes association matrix identified three clusters of genetic variants with different effects on white blood cell counts, height, and body mass index (BMI). To assess the potential clinical and molecular effects of these groups of variants, we investigated the association between cluster-specific genetic risk scores and phenotypes in the COPDGene cohort. We observed differences in steroid use, BMI, lymphocyte counts, chronic bronchitis, and differential gene and protein expression across the three genetic risk scores. Our results suggest that multi-phenotype analysis of obstructive lung disease-related risk variants may identify genetically driven phenotypic patterns in COPD.

14.
Front Bioinform ; 3: 1092853, 2023.
Article in English | MEDLINE | ID: mdl-36909938

ABSTRACT

Differences in cells' functions arise from differential activity of regulatory elements, including enhancers. Enhancers are cis-regulatory elements that cooperate with promoters through transcription factors to activate the expression of one or several genes by getting physically close to them in the 3D space of the nucleus. There is increasing evidence that genetic variants associated with common diseases are enriched in enhancers active in cell types relevant to these diseases. Identifying the enhancers associated with genes and conversely, the sets of genes activated by each enhancer (the so-called enhancer/gene or E/G relationships) across cell types, can help understanding the genetic mechanisms underlying human diseases. There are three broad approaches for the genome-wide identification of E/G relationships in a cell type: 1) genetic link methods or eQTL, 2) functional link methods based on 1D functional data such as open chromatin, histone mark or gene expression and 3) spatial link methods based on 3D data such as HiC. Since 1) and 3) are costly, the current strategy is to develop functional link methods and to use data from 1) and 3) as reference to evaluate them. However, there is still no consensus on the best functional link method to date, and method comparison remain seldom. Here, we compared the relative performances of three recent methods for the identification of enhancer-gene links, TargetFinder, Average-Rank, and the ABC model, using the three latest benchmarks from the field: a reference that combines 3D and eQTL data, called BENGI, and two genetic screening references, called CRiFF and CRiSPRi. Overall, none of the three methods performed best on the three references. CRiFF and CRISPRi reference sets are likely more reliable, but CRiFF is not genome-wide and CRiFF and CRISPRi are mostly available on the K562 cancer cell line. The BENGI reference set is genome-wide but likely contains many false positives. This study therefore calls for new reliable and genome-wide E/G reference data rather than new functional link E/G identification methods.

15.
EBioMedicine ; 88: 104439, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36709579

ABSTRACT

BACKGROUND: Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS: Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS: We selected for further study the conserved surface polysaccharide Poly-ß-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION: Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS: ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.


Subject(s)
Escherichia coli , Meningitis, Bacterial , Animals , Mice , Escherichia coli/genetics , Antibodies, Bacterial , Bacteria/genetics , Immunotherapy , High-Throughput Nucleotide Sequencing
16.
Stem Cell Rev Rep ; 19(3): 585-600, 2023 04.
Article in English | MEDLINE | ID: mdl-36422774

ABSTRACT

Since the beginning of the Coronavirus disease (COVID)-19 pandemic in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for more than 600 million infections and 6.5 million deaths worldwide. Given the persistence of SARS-CoV-2 and its ability to develop new variants, the implementation of an effective and long-term herd immunity appears to be crucial to overcome the pandemic. While a vast field of research has focused on the role of humoral immunity against SARS-CoV-2, a growing body of evidence suggest that antibodies alone only confer a partial protection against infection of reinfection which could be of high importance regarding the strategic development goals (SDG) of the United Nations (UN) and in particular UN SDG3 that aims towards the realization of good health and well being on a global scale in the context of the COVID-19 pandemic.In this review, we highlight the role of humoral immunity in the host defense against SARS-CoV-2, with a focus on highly neutralizing antibodies. We summarize the results of the main clinical trials leading to an overall disappointing efficacy of convalescent plasma therapy, variable results of monoclonal neutralizing antibodies in patients with COVID-19 but outstanding results for the mRNA based vaccines against SARS-CoV-2. Finally, we advocate that beyond antibody responses, the development of a robust cellular immunity against SARS-CoV-2 after infection or vaccination is of utmost importance for promoting immune memory and limiting disease severity, especially in case of (re)-infection by variant viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19 Serotherapy , Antibodies, Neutralizing/therapeutic use
17.
Ophthalmol Glaucoma ; 6(4): 366-379, 2023.
Article in English | MEDLINE | ID: mdl-36481453

ABSTRACT

PURPOSE: To examine the associations of alcohol consumption with glaucoma and related traits, to assess whether a genetic predisposition to glaucoma modified these associations, and to perform Mendelian randomization (MR) experiments to probe causal effects. DESIGN: Cross-sectional observational and gene-environment interaction analyses in the UK Biobank. Two-sample MR experiments using summary statistics from large genetic consortia. PARTICIPANTS: UK Biobank participants with data on intraocular pressure (IOP) (n = 109 097), OCT-derived macular inner retinal layer thickness measures (n = 46 236) and glaucoma status (n = 173 407). METHODS: Participants were categorized according to self-reported drinking behaviors. Quantitative estimates of alcohol intake were derived from touchscreen questionnaires and food composition tables. We performed a 2-step analysis, first comparing categories of alcohol consumption (never, infrequent, regular, and former drinkers) before assessing for a dose-response effect in regular drinkers only. Multivariable linear, logistic, and restricted cubic spline regression, adjusted for key sociodemographic, medical, anthropometric, and lifestyle factors, were used to examine associations. We assessed whether any association was modified by a multitrait glaucoma polygenic risk score. The inverse-variance weighted method was used for the main MR analyses. MAIN OUTCOME MEASURES: Intraocular pressure, macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and prevalent glaucoma. RESULTS: Compared with infrequent drinkers, regular drinkers had higher IOP (+0.17 mmHg; P < 0.001) and thinner mGCIPL (-0.17 µm; P = 0.049), whereas former drinkers had a higher prevalence of glaucoma (odds ratio, 1.53; P = 0.002). In regular drinkers, alcohol intake was adversely associated with all outcomes in a dose-dependent manner (all P < 0.001). Restricted cubic spline regression analyses suggested nonlinear associations, with apparent threshold effects at approximately 50 g (∼6 UK or 4 US alcoholic units)/week for mRNFL and mGCIPL thickness. Significantly stronger alcohol-IOP associations were observed in participants at higher genetic susceptibility to glaucoma (Pinteraction < 0.001). Mendelian randomization analyses provided evidence for a causal association with mGCIPL thickness. CONCLUSIONS: Alcohol intake was consistently and adversely associated with glaucoma and related traits, and at levels below current United Kingdom (< 112 g/week) and United States (women, < 98 g/week; men, < 196 g/week) guidelines. Although we cannot infer causality definitively, these results will be of interest to people with or at risk of glaucoma and their advising physicians. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.

18.
Front Genet ; 13: 954713, 2022.
Article in English | MEDLINE | ID: mdl-36544485

ABSTRACT

Though both genetic and lifestyle factors are known to influence cardiometabolic outcomes, less attention has been given to whether lifestyle exposures can alter the association between a genetic variant and these outcomes. The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium's Gene-Lifestyle Interactions Working Group has recently published investigations of genome-wide gene-environment interactions in large multi-ancestry meta-analyses with a focus on cigarette smoking and alcohol consumption as lifestyle factors and blood pressure and serum lipids as outcomes. Further description of the biological mechanisms underlying these statistical interactions would represent a significant advance in our understanding of gene-environment interactions, yet accessing and harmonizing individual-level genetic and 'omics data is challenging. Here, we demonstrate the coordinated use of summary-level data for gene-lifestyle interaction associations on up to 600,000 individuals, differential methylation data, and gene expression data for the characterization and prioritization of loci for future follow-up analyses. Using this approach, we identify 48 genes for which there are multiple sources of functional support for the identified gene-lifestyle interaction. We also identified five genes for which differential expression was observed by the same lifestyle factor for which a gene-lifestyle interaction was found. For instance, in gene-lifestyle interaction analysis, the T allele of rs6490056 (ALDH2) was associated with higher systolic blood pressure, and a larger effect was observed in smokers compared to non-smokers. In gene expression studies, this allele is associated with decreased expression of ALDH2, which is part of a major oxidative pathway. Other results show increased expression of ALDH2 among smokers. Oxidative stress is known to contribute to worsening blood pressure. Together these data support the hypothesis that rs6490056 reduces expression of ALDH2, which raises oxidative stress, leading to an increase in blood pressure, with a stronger effect among smokers, in whom the burden of oxidative stress is greater. Other genes for which the aggregation of data types suggest a potential mechanism include: GCNT4×current smoking (HDL), PTPRZ1×ever-smoking (HDL), SYN2×current smoking (pulse pressure), and TMEM116×ever-smoking (mean arterial pressure). This work demonstrates the utility of careful curation of summary-level data from a variety of sources to prioritize gene-lifestyle interaction loci for follow-up analyses.

19.
Viruses ; 14(10)2022 09 28.
Article in English | MEDLINE | ID: mdl-36298700

ABSTRACT

BACKGROUND: Congenital cytomegalovirus (cCMV) infection is frequent and potentially severe. The immunobiology of cCMV infection is poorly understood, involving cytokines that could be carried within or on the surface of extracellular vesicles (EV). We investigated intra-amniotic cytokines, mediated or not by EV, in cCMV infection. METHODS: Forty infected fetuses following early maternal primary infection and forty negative controls were included. Infected fetuses were classified according to severity at birth: asymptomatic, moderately or severely symptomatic. Following the capture of EV in amniotic fluid (AF), the concentrations of 38 cytokines were quantified. The association with infection and its severity was determined using univariate and multivariate analysis. A prediction analysis based on principal component analysis was conducted. RESULTS: cCMV infection was nominally associated with an increase in six cytokines, mainly soluble (IP-10, IL-18, ITAC, and TRAIL). EV-associated IP-10 was also increased in cases of fetal infection. Severity of fetal infection was nominally associated with an increase in twelve cytokines, including five also associated with fetal infection. A pattern of specific increase in six proteins fitted severely symptomatic infection, including IL-18soluble, TRAILsoluble, CRPsoluble, TRAILsurface, MIGinternal, and RANTESinternal. CONCLUSION: Fetal infection and its severity are associated with an increase in pro-inflammatory cytokines involved in Th1 immune response.


Subject(s)
Cytomegalovirus Infections , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Female , Humans , Amniotic Fluid/metabolism , Interleukin-18/metabolism , Chemokine CXCL10/metabolism , Cytomegalovirus Infections/metabolism , Cytokines/metabolism
20.
HGG Adv ; 3(4): 100136, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36105883

ABSTRACT

Publicly available genome-wide association studies (GWAS) summary statistics exhibit uneven quality, which can impact the validity of follow-up analyses. First, we present an overview of possible misspecifications that come with GWAS summary statistics. Then, in both simulations and real-data analyses, we show that additional information such as imputation INFO scores, allele frequencies, and per-variant sample sizes in GWAS summary statistics can be used to detect possible issues and correct for misspecifications in the GWAS summary statistics. One important motivation for us is to improve the predictive performance of polygenic scores built from these summary statistics. Unfortunately, owing to the lack of reporting standards for GWAS summary statistics, this additional information is not systematically reported. We also show that using well-matched linkage disequilibrium (LD) references can improve model fit and translate into more accurate prediction. Finally, we discuss how to make polygenic score methods such as lassosum and LDpred2 more robust to these misspecifications to improve their predictive power.

SELECTION OF CITATIONS
SEARCH DETAIL
...