Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Article in English | MEDLINE | ID: mdl-38709196

ABSTRACT

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Subject(s)
Climate Change , Fagus , Seasons , Temperature , Fagus/growth & development , Fagus/physiology , Europe , Seeds/growth & development , Seeds/physiology , Reproduction , Trees/growth & development , Trees/physiology , Pollination
2.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Article in English | MEDLINE | ID: mdl-37386149

ABSTRACT

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Subject(s)
Reproduction , Trees , Fertility , Seeds , Satiation
3.
Sci Total Environ ; 890: 164281, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37216984

ABSTRACT

Wildfire regimes affected by global change have been the cause of major concern in recent years. Both direct prevention (e.g., fuel management planning) and land governance strategies (e.g., agroforestry development) can have an indirect regulatory effect on wildfires. Herein, we tested the hypothesis that active land planning and management in Italy have mitigated wildfire impacts in terms of loss of ecosystem services and forest cover, and burned wildland-urban interface, from 2007 to 2017. At the national scale, we assessed the effect size of major potential fire drivers such as climate, weather, flammability, socio-economic descriptors, land use changes, and proxies for land governance (e.g., European funds for rural development, investments in sustainable forest management, agro-pastoral activities), including potential interactions, on fire-related impacts via Random Forest modelling and Generalized Additive Mixed Model. Agro-forest districts (i.e., aggregations of neighbouring municipalities with homogeneous forest and agricultural characteristics) were used as spatial units of analysis. Our results confirm that territories with more active land governance show lower wildfire impacts, even under severe flammability and climatic conditions. This study supports current regional, national, and European strategies towards "fire resistant and resilient landscapes" by fostering agro-forestry, rural development, and nature conservation integrated policies.


Subject(s)
Wildfires , Ecosystem , Italy , Weather , Cities
4.
Nat Commun ; 13(1): 2381, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501313

ABSTRACT

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Subject(s)
Forests , Seeds , Fertility , Reproduction , Seeds/physiology , Trees
5.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460530

ABSTRACT

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Subject(s)
Forests , Trees , Biodiversity , Climate , Fertility , Seeds
6.
Philos Trans R Soc Lond B Biol Sci ; 376(1839): 20200369, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34657462

ABSTRACT

Populations of many long-lived plants exhibit spatially synchronized seed production that varies extensively over time, so that seed production in some years is much higher than on average, while in others, it is much lower or absent. This phenomenon termed masting or mast seeding has important consequences for plant reproductive success, ecosystem dynamics and plant-human interactions. Inspired by recent advances in the field, this special issue presents a series of articles that advance the current understanding of the ecology and evolution of masting. To provide a broad overview, we reflect on the state-of-the-art of masting research in terms of underlying proximate mechanisms, ontogeny, adaptations, phylogeny and applications to conservation. While the mechanistic drivers and fitness consequences of masting have received most attention, the evolutionary history, ontogenetic trajectory and applications to plant-human interactions are poorly understood. With increased availability of long-term datasets across broader geographical and taxonomic scales, as well as advances in molecular approaches, we expect that many mysteries of masting will be solved soon. The increased understanding of this global phenomenon will provide the foundation for predictive modelling of seed crops, which will improve our ability to manage forests and agricultural fruit and nut crops in the Anthropocene. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.


Subject(s)
Ecosystem , Reproduction , Ecology , Humans , Seeds , Trees
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1839): 20200380, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34657463

ABSTRACT

There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.


Subject(s)
Ecosystem , El Nino-Southern Oscillation , Climate Change , Reproduction , Seeds
8.
Philos Trans R Soc Lond B Biol Sci ; 376(1839): 20200384, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34657468

ABSTRACT

The timing of seed production and release is highly relevant for successful plant reproduction. Ecological disturbances, if synchronized with reproductive effort, can increase the chances of seeds and seedlings to germinate and establish. This can be especially true under variable and synchronous seed production (masting). Several observational studies have reported worldwide evidence for co-occurrence of disturbances and seed bumper crops in forests. Here, we review the evidence for interaction between disturbances and masting in global plant communities; we highlight feedbacks between these two ecological processes and posit an evolutionary pathway leading to the selection of traits that allow trees to synchronize seed crops with disturbances. Finally, we highlight relevant questions to be tested on the functional and evolutionary relationship between disturbances and masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.


Subject(s)
Reproduction , Trees , Forests , Seeds
9.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34400503

ABSTRACT

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Subject(s)
Fertility , Models, Biological , Regeneration , Trees/growth & development , Forests
10.
Ecology ; 102(7): e03384, 2021 07.
Article in English | MEDLINE | ID: mdl-33950521

ABSTRACT

Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation.


Subject(s)
Fagus , Ecosystem , Europe , Reproduction , Seeds , Weather
12.
Sci Total Environ ; 765: 142788, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33109375

ABSTRACT

Projections of future climate change impacts suggest an increase of wildfire activity in Mediterranean ecosystems, such as southern California. This region is a wildfire hotspot and fire managers are under increasingly high pressures to minimize socio-economic impacts. In this context, predictions of high-risk fire seasons are essential to achieve adequate preventive planning. Regional-scale weather patterns and climatic teleconnections play a key role in modulating fire-conducive conditions across the globe, yet an analysis of the coupled effects of these systems onto the spread of large wildfires is lacking for the region. We analyzed seven decades (1953-2018) of documentary wildfire records from southern California to assess the linkages between weather patterns and large-scale climate modes using various statistical techniques, including Redundancy Analysis, Superposed Epoch Analysis and Wavelet Coherence. We found that high area burned is significantly associated with the occurrence of adverse weather patterns, such as severe droughts and Santa Ana winds. Further, we document how these fire-promoting events are mediated by climate teleconnections, particularly by the coupled effects of El Niño Southern Oscillation and Atlantic Multidecadal Oscillation.

13.
Sci Total Environ ; 699: 134006, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31522049

ABSTRACT

Climate change is expected to alter disturbance regimes including fires in European beech (Fagus sylvatica L.) forests. Regarding the resilience of beech forests to fire it is questionable whether seeds of this non-serotinous obligate masting seeder find advantageous conditions in a post-fire environment. The probability of recruitment success has been shown to increase when fire coincides with a mast year. However, the fire-induced recruitment window is poorly defined, and it is unclear how other interacting factors influence its duration. We used a space-for-time approach to model the relationships between post-fire beech recruitment, timing of seed mast events, and interacting environmental conditions using a zero-inflated model. Our results show that recruitment peaks 5-12 years after a fire, and continues throughout three decades post-fire. Beech recruitment in the post-fire period is driven by mast intensity interacting with (i) canopy opening as a consequence of progressive post-fire tree mortality and (ii) coverages of competing ground vegetation. Spring-summer moisture showed a weak positive effect on beech recruitment. We conclude that fires increase light availability, which in coincidence with a mast event results in pulses of beech recruitment. The delayed post-fire mortality of beech creates a recruitment window lasting for up to three decades, resulting in a higher-than-expected resilience of beech to individual fire disturbances.


Subject(s)
Climate Change , Fagus , Fires , Forests , Environmental Monitoring
14.
Ecol Lett ; 23(2): 210-220, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31858712

ABSTRACT

Highly variable and synchronised production of seeds by plant populations, known as masting, is implicated in many important ecological processes, but how it arises remains poorly understood. The lack of experimental studies prevents underlying mechanisms from being explicitly tested, and thereby precludes meaningful predictions on the consequences of changing environments for plant reproductive patterns and global vegetation dynamics. Here we review the most relevant proximate drivers of masting and outline a research agenda that takes the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding. We divide the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrate how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples. We envision that the experiments we outline will deliver new insights into how and why masting patterns might respond to a changing environment.


Subject(s)
Ecology , Pollen , Reproduction , Seeds
15.
Ecol Lett ; 21(12): 1833-1844, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30230201

ABSTRACT

Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.


Subject(s)
Fagus , Trees , Climate Change , Forests , Reproduction , Trees/growth & development
16.
Nat Commun ; 8(1): 2205, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29263383

ABSTRACT

Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.


Subject(s)
Climate Change , Climate , Seasons , Seed Dispersal , Trees/growth & development , Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Ecosystem , Fagus/growth & development , Picea/growth & development , Pollination , Reproduction , Seeds/growth & development , Trees/classification
17.
Nat Clim Chang ; 7: 395-402, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28861124

ABSTRACT

Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

18.
New Phytol ; 215(2): 595-608, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28631320

ABSTRACT

Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data.


Subject(s)
Fagus/physiology , Seeds/physiology , Climate , Droughts , Europe , Logistic Models , Seasons , Spatio-Temporal Analysis , Temperature , Weather
19.
Ecology ; 98(5): 1473, 2017 May.
Article in English | MEDLINE | ID: mdl-28241388

ABSTRACT

Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behavior. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models.


Subject(s)
Fagus/physiology , Picea/physiology , Europe , Forests , Norway , Trees
20.
Article in English | MEDLINE | ID: mdl-27216512

ABSTRACT

Fire has been used for centuries to generate and manage some of the UK's cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That fire modifies peatland characteristics at a range of scales is clearly understood. Whether these changes are perceived as positive or negative depends upon how trade-offs are made between ecosystem services and the spatial and temporal scales of concern. Here we explore the complex interactions and trade-offs in peatland fire management, evaluating the benefits and costs of managed fire as they are currently understood. We highlight the need for (i) distinguishing between the impacts of fires occurring with differing severity and frequency, and (ii) improved characterization of ecosystem health that incorporates the response and recovery of peatlands to fire. We also explore how recent research has been contextualized within both scientific publications and the wider media and how this can influence non-specialist perceptions. We emphasize the need for an informed, unbiased debate on fire as an ecological management tool that is separated from other aspects of moorland management and from political and economic opinions.This article is part of the themed issue 'The interaction of fire and mankind'.


Subject(s)
Conservation of Natural Resources/methods , Fires , Wetlands , Conservation of Natural Resources/legislation & jurisprudence , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...