Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(47): 44867-44879, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046339

ABSTRACT

Nanotechnology research is emerging as a cutting-edge technology, and nanocomposites have played a significant role in pest control. Therefore, the present study focuses on the synthesis of tungsten oxide (WO3), iron oxide (magnetic nanoparticle, MNP), and copper-doped iron oxide (MNP-Cu) nanocomposites and explores the different effects of their binary combinations with the insecticide cyromazine against Spodoptera littoralis. The synthesized nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman spectroscopy. None of the tested nanomaterials showed any toxicity against the different stages of S. littoralis. Larval and pupal durations increased with increasing cyromazine and nanomaterial concentrations. The longest larval and pupal durations were recorded under treatment with the mixture of cyromazine (100 mg/L) + MNP-Cu (500 mg/L); the survival periods were 23.5 and 15.6 days, compared with 10.8 and 7.7 days in the control, respectively. The percentages of pupation and adult emergence were negatively affected by all treatments. Among the 500 mg/L nanomaterial combinations, only cyromazine (25 mg/L) and WO3 (500 mg/L) resulted in adult emergence (at a rate of 27.3%). Some abnormalities in the S. littoralis stages were observed following treatment with the tested materials. The glutathione S-transferase and alpha-esterase enzyme activities in S. littoralis were significantly increased after treatment with cyromazine, followed by cyromazine/MNP-Cu combinations. The quantitative polymerase chain reaction (Q-PCR) data showed that all treated insects had a higher immune response than the control. Finally, mixes of nanocomposites and cyromazine may be suggested as viable alternatives for S. littoralis management.

2.
Plants (Basel) ; 12(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299082

ABSTRACT

Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3-3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.

3.
Viruses ; 14(10)2022 09 29.
Article in English | MEDLINE | ID: mdl-36298706

ABSTRACT

Potato virus Y (PVY) is one of the most harmful phytopathogens. It causes big problems for potatoes and other important crops around the world. Nanoclays have been extensively studied for various biomedical applications. However, reports on their interactions with phytopathogens, particularly viral infections, are still limited. In this study, the protective activity of Egyptian nanoclay (CE) and standard nanoclay (CS) against PVY was evaluated on potato (Solanum tuberosum L.) plants. Their physicochemical and morphological properties were examined with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and energy dispersive spectrometer (EDS). SEM and TEM analyses revealed that CE has a spherical and hexagonal structure ranging from 20 to 80 nm in size, while CS has boulder-like and tubular structures of about 320 nm in size. FTIR and EDS showed that both nanoclay types have different functional groups and contain many vital plant nutrients that are necessary for every stage and process of the plant, including development, productivity, and metabolism. Under greenhouse conditions, a 1% nanoclay foliar application enhanced potato growth, reduced disease symptoms, and reduced PVY accumulation levels compared with non-treated plants. Significant increases in levels of antioxidant enzymes (PPO and POX) and considerable decreases in oxidative stress markers (MDA and H2O2) were also reported. Moreover, a significant increase in the transcriptional levels of defense-related genes (PAL-1, PR-5, and CHI-2) was observed. All experiment and analysis results indicate that the CE type is more effective than the CS type against PVY infection. Based on these results, the foliar applications of nanoclay could be used to manage plant viral infections in a way that is both effective and environmentally friendly. To our knowledge, this is the first report of the antiviral activity of the foliar application of nanoclay against PVY infection.


Subject(s)
Potyvirus , Solanum tuberosum , Potyvirus/genetics , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Plant Diseases , Antiviral Agents/metabolism
4.
Viruses ; 14(8)2022 08 20.
Article in English | MEDLINE | ID: mdl-36016452

ABSTRACT

The application of microbe-derived products as natural biocontrol agents to boost systemic disease resistance to virus infections in plants is a prospective strategy to make agriculture more sustainable and environmentally friendly. In the current study, the rhizobacterium Bacillus amyloliquefaciens strain TBorg1 was identified based on 16S rRNA, rpoB, and gyrA gene sequences, and evaluated for its efficiency in conferring protection of tomato from infection by Tobacco mosaic virus (TMV). Under greenhouse circumstances, foliar sprays of TBorg1 culture filtrate (TBorg1-CF) promoted tomato growth, lowered disease severity, and significantly decreased TMV accumulation in systemically infected leaves of treated plants relative to untreated controls. TMV accumulation was reduced by 90% following the dual treatment, applied 24 h before and after TMV infection. Significant increases in levels of total soluble carbohydrates, proteins, and ascorbic acid were also found. In addition, a significant rise in activities of enzymes capable of scavenging reactive oxygen species (PPO and POX), as well as decreased levels of non-enzymatic oxidative stress markers (H2O2 and MDA) were observed, compared to untreated plants. Enhanced systemic resistance to TMV was indicated by significantly increased transcript accumulation of polyphenolic pathway (C4H, HCT, and CHI) and pathogenesis-related (PR-1 and PR-5) genes. Out of the 15 compounds identified in the GC-MS analysis, 1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester and phenol, 2,4-bis(1,1-dimethylethyl), as well as L-proline, N-valeryl-, and heptadecyl ester were present in the highest concentrations in the ethyl acetate extract of TBorg1-CF. In addition, significant amounts of n-hexadecanoic acid, pyrrolo [1,2-a] pyrazine-1,4-dione hexahydro-3-(2-methylpropyl)-, nonane, 5-butyl-, and eicosane were also detected. These compounds may act as inducers of systemic resistance to viral infection. Our findings indicate that the newly isolated B. amyloliquefaciens strain TBorg1 could be a potentially useful rhizobacterium for promoting plant growth and a possible source of biocontrol agents for combating plant virus infections.


Subject(s)
Bacillus amyloliquefaciens , Solanum lycopersicum , Tobacco Mosaic Virus , Bacillus amyloliquefaciens/genetics , Bacillus amyloliquefaciens/metabolism , Esters/metabolism , Hydrogen Peroxide/metabolism , Solanum lycopersicum/genetics , Phenols , Plant Diseases , Plant Proteins/genetics , RNA, Ribosomal, 16S/genetics , Nicotiana , Tobacco Mosaic Virus/genetics
5.
Saudi J Biol Sci ; 29(5): 3617-3625, 2022 May.
Article in English | MEDLINE | ID: mdl-35844398

ABSTRACT

Potato cyst nematodes caused by Globodera rostochiensis, are quarantine-restricted pests causing significant yield losses to potato growers. The phytohormone ethylene play significant roles in various plant-pathogen interactions, however, the molecular knowledge of how ethylene influences potato-nematode interaction is still lacking. Precise detection of potato-induced genes is essential for recognizing plant-induced systemic resistance (ISR). Candidate genes or PR- proteins with putative functions in modulating the response to potato cyst nematode stress were selected and functionally characterized. Using real-time polymerase chain reaction (RT-PCR), we measured the quantified expression of four pathogenesis-related (PR) genes, PR2, PR3, peroxidase, and polyphenol oxidase. The activation of these genes is intermediate during the ISR signaling in the root tissues. Using different ethylene concentrations could detect and induce defense genes in infected potato roots compared to the control treatment. The observed differences in the gene expression of treated infected plants are because of different concentrations of ethylene treatment and pathogenicity. Besides, the overexpressed or suppressed of defense- related genes during developmental stages and pathogen infection. We concluded that ethylene treatments positively affected potato defensive genes expression levels against cyst nematode infection. The results emphasize the necessity of studying molecular signaling pathways controlling biotic stress responses. Understanding such mechanisms will be critical for the development of broad-spectrum and stress-tolerant crops in the future.

6.
Biology (Basel) ; 10(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681125

ABSTRACT

Surveillance investigations for pathogenic and toxigenic fungi are important to refine our understanding of their epidemiology and help in predicting their outbreaks. During 2019, 198 samples of wheat grains were collected from 25 wheat-growing governorates in Egypt to detect and identify seed-borne mycoflora in vitro. Forty-four fungal species belonging to 20 genera were identified. Molecular data for these fungi were analyzed to construct a phylogenetic tree. Occurrence and biodiversity indicators were calculated. Two prevalent pathogens (average incidence > 40%) were Alternaria alternata and Cladosporium spp. Ustilago tritici was present in only seven of the 25 governorates, and less abundant than Tilletia tritici, the causal agent of stinking smut. Sinai governorate recorded the greatest species diversity, while the greatest species richness was in Qena and Sohag governorates. Canonical correspondence analysis of data for 20 fungal genera with temperature, relative humidity, precipitation, wind speed or solar radiation revealed that relative humidity was the most influential weather variable. It showed that occurrence and distribution of the 20 genera corresponded well with three out of four Egyptian climatic regions: Mediterranean, semi-arid, and arid. Knowing pathogen occurrence and distribution in Egypt is the first step to developing future disease management strategies to limit yield losses and improve food security. Despite this study being conducted on the wheat-growing areas in Egypt, our findings are useful for other wheat-growing countries that share the same climatic conditions. The correlation between a given fungus and the climatic variables can be useful in other ecosystems.

7.
Sci Rep ; 9(1): 9692, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273308

ABSTRACT

Tomato mosaic disease, caused by Tomato Mosaic Virus (ToMV), is one of the most destructive diseases which results in serious crop losses. Research investigations dealing with the biocontrol activity of arbuscular mycorrhizal fungi (AMF) against this viral disease are limited. In this study, the biocontrol activity of AMF on tomato plants infected with ToMV was evaluated in the greenhouse. In addition, their impacts on the transcriptional expression levels of thirteen genes controlling the phenylpropanoid, flavonoid and chlorogenic acid biosynthetic pathways were also investigated using quantitative real-time PCR. Transcriptional expressions of the majority of the studied genes were up-regulated by mycorrhizal colonization in the presence of ToMV, particularly PAL1 and HQT, suggesting their pathogen-dependent inducing effect. Under greenhouse conditions, a significant reduction in the disease severity and incidence, as well as the viral accumulation level was observed as a response to the mycorrhizal colonization of the infected plants. Moreover, the evaluated growth parameters, photosynthetic pigments, and flavonoid content were significantly enhanced by AMF colonization. The obtained results demonstrated the protective role of AMF in triggering the plant immunity against ToMV in a pathogen-dependent manner. Beside their protective and growth-promotion activities, AMF are characterized by low-cost and environment-friendly properties which support their possible use for control of tomato mosaic disease.


Subject(s)
Biosynthetic Pathways/genetics , Chlorogenic Acid/metabolism , Flavonoids/metabolism , Mycorrhizae/physiology , Plant Diseases/prevention & control , Plant Proteins/genetics , Solanum lycopersicum/genetics , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Solanum lycopersicum/virology , Plant Diseases/immunology , Plant Diseases/virology , Plant Immunity , Symbiosis , Tobamovirus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...