Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chirality ; 35(5): 298-310, 2023 05.
Article in English | MEDLINE | ID: mdl-36775278

ABSTRACT

In this study, we exploit a recently developed fragment diabatization-based excitonic model, FrDEx, to simulate the electronic circular dichroism (ECD) spectra of three guanine-rich DNA sequences arranged in guanine quadruple helices with different topologies: thrombin binding aptamer (antiparallel), c-Myc promoter (parallel), and human telomeric sequence (3+1 hybrid). Starting from time-dependent density functional theory (TD-DFT) calculations with the M052X functional, we apply our protocol to parameterize the FrDEX Hamiltonian, which accounts for electron density overlap and includes both the coupling with charge transfer transitions and the effect of the surrounding bases on the local excitation of each chromophore. The TD-DFT/M052X spectral shapes are in good agreement with the experimental ones, the main source of discrepancy being related to the intrinsic error on the computed transition energies of guanine monomer. FrDEx spectra are fairly close to the reference TD-DFT ones, allowing a significant advance with respect to a more standard excitonic Hamiltonian. We also show that the ECD spectra are sensitive to the inclusion of the inner K + cation in the calculation.


Subject(s)
DNA , Quantum Theory , Humans , Circular Dichroism , Stereoisomerism , Electronics , Guanine
2.
J Phys Chem B ; 126(50): 10608-10621, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36508709

ABSTRACT

Here we refine and assess two computational procedures aimed to include the effect of thermal fluctuations on the electronic spectra and the ultrafast excited state dynamics of multichromophore systems, focusing on DNA duplexes. Our approach is based on a fragment diabatization procedure that, from a given Quantum Mechanical (QM) reference method, can provide the parameters (energy and coupling) of the reference diabatic states on the basis of the isolated fragments, either for a purely electronic excitonic Hamiltonian (FrDEx) or a linear vibronic coupling Hamiltonian (FrD-LVC). After having defined the most cost-effective procedure for DNA duplexes on two smaller fragments, FrDEx is used to simulate the absorption and Electronic Circular Dichroism (ECD) spectra of (GC)5 sequences, including the coupling with the Charge Transfer (CT) states, on a number of structures extracted from classical Molecular Dynamics (MD) simulations. The computed spectra are close to the reference TD-DFT calculations and fully consistent with the experimental ones. We then couple MD simulations and FrD-LVC to simulate the interplay between local excitations and CT transitions, both intrastrand and interstrand, in GC and CG steps when included in a oligoGC or in oligoAT DNA sequence. We predict that for both sequences a substantial part of the photoexcited population on G and C decays, within 50-100 fs, to the corresponding intrastrand CT states. This transfer is more effective for GC steps that, on average, are more closely stacked than CG ones.


Subject(s)
DNA , Quantum Theory , DNA/chemistry , Molecular Dynamics Simulation , Circular Dichroism , Density Functional Theory
3.
Int J Biol Macromol ; 194: 882-894, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34838862

ABSTRACT

Guanine radical cation (G•+) is a key intermediate in many oxidative processes occurring in nucleic acids. Here, by combining mixed Quantum Mechanical/Molecular Mechanics calculations and Molecular Dynamics (MD) simulations, we study how the structural behaviour of a tract GGG(TTAGGG)3 (hereafter Tel21) of the human telomeric sequence, folded in an antiparallel quadruple helix, changes when one of the G bases is ionized to G•+ (Tel21+). Once assessed that the electron-hole is localized on a single G, we perform MD simulations of twelve Tel21+ systems, differing in the position of G•+ in the sequence. When G•+ is located in the tetrad adjacent to the diagonal loop, we observe substantial structural rearrangements, which can decrease the electrostatic repulsion with the inner Na+ ions and increase the solvent exposed surface of G•+. Analysis of solvation patterns of G•+ provides new insights on the main reactions of G•+, i.e. the deprotonation at two different sites and hydration at the C8 atom, the first steps of the processes producing 8oxo-Guanine. We suggest the main structural determinants of the relative reactivity of each position and our conclusions, consistent with the available experimental trends, can help rationalizing the reactivity of other G-quadruplex topologies.


Subject(s)
DNA/chemistry , G-Quadruplexes , Guanine/chemistry , Ions/chemistry , Molecular Dynamics Simulation , Oxidative Stress , Quantum Theory , Telomere/chemistry , Humans , Models, Molecular , Nucleic Acid Conformation , Solubility
4.
Molecules ; 26(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34443377

ABSTRACT

We here investigate the Electronic Circular Dichroism (ECD) Spectra of two representative Guanine-rich sequences folded in a Quadruple helix (GQ), by using a recently developed fragment diabatisation based excitonic model (FrDEx). FrDEx can include charge transfer (CT) excited states and consider the effect of the surrounding monomers on the local excitations (LEs). When applied to different structures generated by molecular dynamics simulations on a fragment of the human telomeric sequence (Tel21/22), FrDEx provides spectra fully consistent with the experimental one and in good agreement with that provided by quantum mechanical (QM) method used for its parametrization, i.e., TD-M05-2X. We show that the ECD spectrum is moderately sensitive to the conformation adopted by the bases of the loops and more significantly to the thermal fluctuations of the Guanine tetrads. In particular, we show how changes in the overlap of the tetrads modulate the intensity of the ECD signal. We illustrate how this correlates with changes in the character of the excitonic states at the bottom of the La and Lb bands, with larger LE and CT involvement of bases that are more closely stacked. As an additional test, we utilised FrDEx to compute the ECD spectrum of the monomeric and dimeric forms of a GQ forming sequence T30695 (5'TGGGTGGGTGGGTGGG3'), i.e., a system containing up to 24 Guanine bases, and demonstrated the satisfactory reproduction of the experimental and QM reference results. This study provides new insights on the effects modulating the ECD spectra of GQs and, more generally, further validates FrDEx as an effective tool to predict and assign the spectra of closely stacked multichromophore systems.


Subject(s)
Circular Dichroism , DNA/chemistry , Electrons , Molecular Dynamics Simulation , Nucleic Acid Conformation , Dimerization , Magnetic Resonance Spectroscopy , Temperature
5.
J Chem Theory Comput ; 17(8): 4660-4674, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34270258

ABSTRACT

We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a linear vibronic coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intrachromophore decays, like those at conical intersections, and interchromophore processes, like exciton localization/delocalization and the involvement of charge-transfer (CT) states. We used FrD-LVC parametrized with time-dependent density functional theory (TD-DFT) calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a guanine-cytosine (GC) hydrogen-bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all of the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G → C CT state, which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ∼50% of that on C decay to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show that it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region. At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics.


Subject(s)
Cytosine/chemistry , Guanine/chemistry , Base Pairing , Cytosine/metabolism , Density Functional Theory , Guanine/metabolism , Hydrogen Bonding
6.
J Chem Theory Comput ; 17(1): 405-415, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33378185

ABSTRACT

We here propose a general and flexible approach, based on fragment diabatization, which incorporates charge transfer states and significantly increases the reliability of excitonic Hamiltonians for systems where the chromophores are very close. This model (FrDEx) is used to compute the electronic circular dichroism and absorption spectra of two prototype guanine-rich DNA sequences folded in quadruple helices (GQs), i.e., a fragment of the human telomeric sequence (Tel21, antiparallel), and (TGGGGT)4 (TG4T, parallel). Calculations on different subsets of Tel21 and TG4T, from dimers to tetramers, show that FrDEx provides spectra close to the reference full quantum mechanical (QM) ones (obtained with time-dependent density functional theory), with significant improvements with respect to "standard" excitonic Hamiltonians. Furthermore, these tests enable the most cost-effective procedure for the whole GQ to be determined. FrDEx spectra of Tel21 and TG4T are also in good agreement with the QM and experimental ones and give access to interesting insights into the chemical-physical effects modulating the spectral signals. FrDEx could be profitably used to investigate many other biological and nanotechnological materials, from DNA to (opto)electronic polymers.


Subject(s)
G-Quadruplexes , Guanine/chemistry , DNA/chemistry , Dimerization , Electrons , Models, Molecular , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...