Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713032

ABSTRACT

We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.

2.
J Phys Chem A ; 128(17): 3351-3360, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38651288

ABSTRACT

H2S is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of H2S molecules to selected rotational (JKaKc') levels of the 1B1 Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm. Analysis of the total kinetic energy release spectra derived from these data reveals that all levels predissociate to yield H atoms in conjunction with both SH(A) and SH(X) partners and that the primary SH(A)/SH(X) product branching ratio increases steeply with ⟨Jb2⟩, the square of the rotational angular momentum about the b-inertial axis in the excited state. These products arise via competing homogeneous (vibronic) and heterogeneous (Coriolis-induced) predissociation pathways that involve coupling to dissociative potential energy surfaces (PES(s)) of, respectively, 1A″ and 1A' symmetries. The present data also show H + SH(A) product formation when exciting the JKaKc' = 000 and 111 levels, for which ⟨Jb2⟩ = 0 and Coriolis coupling to the 1A' PES(s) is symmetry forbidden, implying the operation of another, hitherto unrecognized, route to forming H + SH(A) products following excitation of H2S at energies above ∼9 eV. These data can be expected to stimulate future ab initio molecular dynamic studies that test, refine, and define the currently inferred predissociation pathways available to photoexcited H2S molecules.

3.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38616653

ABSTRACT

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

4.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307994

ABSTRACT

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

5.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38317439

ABSTRACT

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

6.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38349638

ABSTRACT

The absolute photoabsorption cross sections of norbornadiene (NBD) and quadricyclane (QC), two isomers with chemical formula C7H8 that are attracting much interest for solar energy storage applications, have been measured from threshold up to 10.8 eV using the Fourier transform spectrometer at the SOLEIL synchrotron radiation facility. The absorption spectrum of NBD exhibits some sharp structure associated with transitions into Rydberg states, superimposed on several broad bands attributable to valence excitations. Sharp structure, although less pronounced, also appears in the absorption spectrum of QC. Assignments have been proposed for some of the absorption bands using calculated vertical transition energies and oscillator strengths for the electronically excited states of NBD and QC. Natural transition orbitals indicate that some of the electronically excited states in NBD have a mixed Rydberg/valence character, whereas the first ten excited singlet states in QC are all predominantly Rydberg in the vertical region. In NBD, a comparison between the vibrational structure observed in the experimental 11B1-11A1 (3sa1 ← 5b1) band and that predicted by Franck-Condon and Herzberg-Teller modeling has necessitated a revision of the band origin and of the vibrational assignments proposed previously. Similar comparisons have encouraged a revision of the adiabatic first ionization energy of NBD. Simulations of the vibrational structure due to excitation from the 5b2 orbital in QC into 3p and 3d Rydberg states have allowed tentative assignments to be proposed for the complex structure observed in the absorption bands between ∼5.4 and 7.0 eV.

7.
Natl Sci Rev ; 10(8): nwad158, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37771464

ABSTRACT

The recently constructed vacuum ultraviolet (VUV) free electron laser (FEL) at the Dalian Coherent Light Source (DCLS) is yielding a wealth of new and exquisitely detailed information about the photofragmentation dynamics of many small gas-phase molecules. This Review focuses particular attention on five triatomic molecules-H2O, H2S, CO2, OCS and CS2. Each shows excitation wavelength-dependent dissociation dynamics, yielding photofragments that populate a range of electronic and (in the case of diatomic fragments) vibrational and rotational quantum states, which can be characterized by different translational spectroscopy methods. The photodissociation of an isolated molecule from a well-defined initial quantum state provides a lens through which one can investigate how and why chemical reactions occur, and provides numerous opportunities for fruitful, synergistic collaborations with high-level ab initio quantum chemists. The chosen molecules, their photofragments and the subsequent chemical reaction networks to which they can contribute are all crucial in planetary atmospheres and in interstellar and circumstellar environments. The aims of this Review are 3-fold: to highlight new photochemical insights enabled by the VUV-FEL at the DCLS, notably the recently recognized central atom elimination process that is shown to contribute in all of these triatomic molecules; to highlight some of the potential implications of this rich photochemistry to our understanding of interstellar chemistry and molecular evolution within the universe; and to highlight other and future research directions in areas related to chemical reaction dynamics and astrochemistry that will be enabled by increased access to VUV-FEL sources.

8.
Chem Sci ; 14(31): 8255-8261, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37564413

ABSTRACT

The emergence of molecular oxygen (O2) in the Earth's primitive atmosphere is an issue of major interest. Although the biological processes leading to its accumulation in the Earth's atmosphere are well understood, its abiotic source is still not fully established. Here, we report a new direct dissociation channel yielding S(1D) + O2(a1Δg/X3Σg-) products from vacuum ultraviolet (VUV) photodissociation of SO2 in the wavelength range between 120 and 160 nm. Experimental results show O2 production to be an important channel from SO2 VUV photodissociation, with a branching ratio of 30 ± 5% at the H Lyman-α wavelength (121.6 nm). The relatively large amounts of SO2 emitted from volcanic eruptions in the Earth's late Archaean eon imply that VUV photodissociation of SO2 could have provided a crucial additional source term in the O2 budget in the Earth's primitive atmosphere. The results could also have implications for abiotic oxygen formation on other planets with atmospheres rich in volcanically outgassed SO2.

9.
Phys Chem Chem Phys ; 25(25): 16672-16698, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37335247

ABSTRACT

Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters, etc). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities to track the time-evolution of molecular structures, and thereby advance understanding of molecular fragmentation processes. This Perspective illustrates two emerging families of dynamical studies. 'One-colour' studies (employing strong field ionisation driven by intense near infrared or single X-ray or extreme ultraviolet laser pulses) afford routes to preparing multiply charged molecular cations and exploring how their fragmentation progresses from valence-dominated to Coulomb-dominated dynamics with increasing charge and how this evolution varies with molecular size and composition. 'Two-colour' studies use one ultrashort laser pulse to create electronically excited neutral molecules (or monocations), whose structural evolution is then probed as a function of pump-probe delay using an ultrafast ionisation pulse along with time and position-sensitive detection methods. This latter type of experiment has the potential to return new insights into not just molecular fragmentation processes but also charge transfer processes between moieties separating with much better defined stereochemical control than in contemporary ion-atom and ion-molecule charge transfer studies.

10.
Chem Sci ; 14(10): 2501-2517, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36908956

ABSTRACT

Photochemistry plays a significant role in shaping the chemical reaction network in the solar nebula and interstellar clouds. However, even in a simple triatomic molecule photodissociation, determination of all fragmentation processes is yet to be achieved. In this work, we present a comprehensive study of the photochemistry of H2S, derived from cutting-edge translational spectroscopy measurements of the H, S(1D) and S(1S) atom products formed by photolysis at wavelengths across the range 155-120 nm. The results provide detailed insights into the energy disposal in the SH(X), SH(A) and H2 co-fragments, and the atomisation routes leading to two H atoms along with S(3P) and S(1D) atoms. Theoretical calculations allow the dynamics of all fragmentation processes, especially the bimodal internal energy distributions in the diatomic products, to be rationalised in terms of non-adiabatic transitions between potential energy surfaces of both 1A' and 1A'' symmetry. The comprehensive picture of the wavelength-dependent (or vibronic state-dependent) photofragmentation behaviour of H2S will serve as a text-book example illustrating the importance of non-Born-Oppenheimer effects in molecular photochemistry, and the findings should be incorporated in future astrochemical modelling.

11.
Photochem Photobiol ; 99(1): 4-18, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35713380

ABSTRACT

Interest in Criegee intermediates (CIs), often termed carbonyl oxides, and their role in tropospheric chemistry has grown massively since the demonstration of laboratory-based routes to their formation and characterization in the gas phase. This article reviews current knowledge regarding the electronic spectroscopy of atmospherically relevant CIs like CH2 OO, CH3 CHOO, (CH3 )2 COO and larger CIs like methyl vinyl ketone oxide and methacrolein oxide that are formed in the ozonolysis of isoprene, and of selected conjugated carbene-derived CIs of interest in the synthetic chemistry community. Of the aforementioned atmospherically relevant CIs, all except CH2 OO and (CH3 )2 COO exist in different conformers which, under tropospheric conditions, can display strikingly different thermal loss rates via unimolecular and bimolecular processes. Calculated photolysis rates based on their absorption properties suggest that solar photolysis will rarely be a significant contributor to the total loss rate for any CI under tropospheric conditions. Nonetheless, there is ever-growing interest in the absorption cross sections and primary photochemistry of CIs following excitation to the strongly absorbing 1 ππ* state, and how this varies with CI, with conformer and with excitation wavelength. The later part of this review surveys the photochemical data reported to date, including a range of studies that demonstrate prompt photo-induced fission of the terminal O-O bond, and speculates about possible alternate decay processes that could occur following non-adiabatic coupling to, and dissociation from, highly internally excited levels of the electronic ground state of a CI.


Subject(s)
Oxides , Spectrum Analysis , Photochemistry
12.
J Phys Chem A ; 126(36): 6236-6243, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36067494

ABSTRACT

Ab initio molecular dynamics studies of CH2OO molecules following excitation to the minimum-energy geometry of the strongly absorbing S2 (1ππ*) state reveal a much richer range of behaviors than just the prompt O-O bond fission, with unity quantum yield and retention of overall planarity, identified in previous vertical excitation studies from the ground (S0) state. Trajectories propagated for 100 fs from the minimum-energy region of the S2 state show a high surface hopping (nonadiabatic coupling) probability between the near-degenerate S2 and S1 (1nπ*) states at geometries close to the S2 minimum, which enables population transfer to the optically dark S1 state. Greater than 80% of the excited population undergoes O-O bond fission on the S2 or S1 potential energy surfaces (PESs) within the analysis period, mostly from nonplanar geometries wherein the CH2 moiety is twisted relative to the COO plane. Trajectory analysis also reveals recurrences in the O-O stretch coordinate, consistent with the resonance structure observed at the red end of the parent S2-S0 absorption spectrum, and a small propensity for out-of-plane motion after nonadiabatic coupling to the S1 PES that enables access to a conical intersection between the S1 and S0 states and cyclization to dioxirane products.

13.
Phys Chem Chem Phys ; 24(37): 22699-22709, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36106844

ABSTRACT

We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.

14.
Phys Chem Chem Phys ; 24(33): 19976, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35959750

ABSTRACT

Correction for 'Multi-mass velocity map imaging study of the 805 nm strong field ionization of CF3I' by Stuart W. Crane et al., Phys. Chem. Chem. Phys., 2022, DOI: https://doi.org/10.1039/d2cp02449g.

15.
Phys Chem Chem Phys ; 24(34): 20138-20151, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35993400

ABSTRACT

Diketopyrrolopyrroles are a popular class of electron-withdrawing unit in optoelectronic materials. When combined with electron donating side-chain functional groups such as thiophenes, they form a very broad class of donor-acceptor molecules: thiophene-diketopyrrolopyrroles (TDPPs). Despite their widescale use in biosensors and photovoltaic materials, studies have yet to establish the important link between the electronic structure of the specific TDPP and the critical optical properties. To bridge this gap, ultrafast transient absorption with 22 fs time resolution has been used to explore the photophysics of three prototypical TDPP molecules: a monomer, dimer and polymer in solution. Interpretation of experimental data was assisted by a recent high-level theoretical study, and additional density functional theory calculations. These studies show that the photophysics of these molecular prototypes under visible photoexcitation are determined by just two excited electronic states, having very different electronic characters (one is optically bright, the other dark), their relative energetic ordering and the timescales for internal conversion from one to the other and/or to the ground state. The underlying difference in electronic structure alters the branching between these excited states and their associated dynamics. In turn, these factors dictate the fluorescence quantum yields, which are shown to vary by ∼1-2 orders of magnitude across the TDPP prototypes investigated here. The fast non-radiative transfer of molecules from the bright to dark states is mediated by conical intersections. Remarkably, wavepacket signals in the measured transient absorption data carry signatures of the nuclear motions that enable mixing of the electronic-nuclear wavefunction and facilitate non-adiabatic coupling between the bright and dark states.

16.
Phys Chem Chem Phys ; 24(31): 18830-18840, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35904364

ABSTRACT

Multi-mass velocity map imaging studies of charged fragments formed by near infrared strong field ionization together with covariance map image analysis offer a new window through which to explore the dissociation dynamics of several different highly charged parent cations, simultaneously - as demonstrated here for the case of CF3IZ+ cations with charges Z ranging from 1 to at least 5. Previous reports that dissociative ionization of CF3I+ cations yields CF3+, I+ and CF2I+ fragment ions are confirmed, and some of the CF3+ fragments are deduced to undergo secondary loss of one or more neutral F atoms. Covariance map imaging confirms the dominance of CF3+ + I+ products in the photodissociation of CF3I2+ cations and, again, that some of the primary CF3+ photofragments can shed one or more F atoms. Rival charge symmetric dissociation pathways to CF2I+ + F+ and to IF+ + CF2+ products and charge asymmetric dissociations to CF3 + I2+ and CF2I2+ + F products are all also identified. The findings for parent cations with Z ≥ 3 are wholly new. In all cases, the fragment recoil velocity distributions imply dissociation dynamics in which coulombic repulsive forces play a dominant role. The major photoproducts following dissociation of CF3I3+ ions are CF3+ and I2+, with lesser contributions from the rival CF2I2+ + F+ and CF32+ + I+ channels. The CF32+ fragment ion images measured at higher incident intensities show a faster velocity sub-group consistent with their formation in tandem with I2+ fragments, from photodissociation of CF3I4+ parent ions. The measured velocity distributions of the I3+ fragment ions contain features attributable to CF3I5+ photodissociation to CF32+ + I3+ and the images of fragments with mass to charge (m/z) ratio ∼31 show formation of I4+ products that must originate from parent ions with yet higher Z.

17.
Philos Trans A Math Phys Eng Sci ; 380(2223): 20200376, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35341307

ABSTRACT

Non-adiabatic couplings between Born-Oppenheimer (BO)-derived potential energy surfaces are now recognized as pivotal in describing the non-radiative decay of electronically excited molecules following photon absorption. This opinion piece illustrates how non-BO effects provide photostability to many biomolecules when exposed to ultraviolet radiation, yet in many other cases are key to facilitating 'reactive' outcomes like isomerization and bond fission. The examples are presented in order of decreasing molecular complexity, spanning studies of organic sunscreen molecules in solution, through two families of heteroatom containing aromatic molecules and culminating with studies of isolated gas phase H2O molecules that afford some of the most detailed insights yet available into the cascade of non-adiabatic couplings that enable the evolution from photoexcited molecule to eventual products. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.


Subject(s)
Ultraviolet Rays , Photochemistry
18.
J Phys Chem A ; 125(44): 9594-9608, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34709807

ABSTRACT

The Coulomb explosion (CE) of jet-cooled CH3I molecules using ultrashort (40 fs), nonresonant 805 nm strong-field ionization at three peak intensities (260, 650, and 1300 TW cm-2) has been investigated by multimass velocity map imaging, revealing an array of discernible fragment ions, that is, Iq+ (q ≤ 6), CHn+ (n = 0-3), CHn2+ (n = 0, 2), C3+, H+, H2+, and H3+. Complementary ab initio trajectory calculations of the CE of CH3IZ+ cations with Z ≤ 14 identify a range of behaviors. The CE of parent cations with Z = 2 and 3 can be well-described using a diatomic-like representation (as found previously) but the CE dynamics of all higher CH3IZ+ cations require a multidimensional description. The ab initio predicted Iq+ (q ≥ 3) fragment ion velocities are all at the high end of the velocity distributions measured for the corresponding Iq+ products. These mismatches are proposed as providing some of the clearest insights yet into the roles of nonadiabatic effects (and intramolecular charge transfer) in the CE of highly charged molecular cations.

19.
Nat Commun ; 12(1): 4459, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34294710

ABSTRACT

The detailed features of molecular photochemistry are key to understanding chemical processes enabled by non-adiabatic transitions between potential energy surfaces. But even in a small molecule like hydrogen sulphide (H2S), the influence of non-adiabatic transitions is not yet well understood. Here we report high resolution translational spectroscopy measurements of the H and S(1D) photoproducts formed following excitation of H2S to selected quantum levels of a Rydberg state with 1B1 electronic symmetry at wavelengths λ ~ 139.1 nm, revealing rich photofragmentation dynamics. Analysis reveals formation of SH(X), SH(A), S(3P) and H2 co-fragments, and in the diatomic products, inverted internal state population distributions. These nuclear dynamics are rationalised in terms of vibronic and rotational dependent predissociations, with relative probabilities depending on the parent quantum level. The study suggests likely formation routes for the S atoms attributed to solar photolysis of H2S in the coma of comets like C/1995 O1 and C/2014 Q2.

20.
J Phys Chem A ; 125(19): 4184-4199, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33966382

ABSTRACT

Wavelength and spatially resolved imaging and 2D plasma chemical modeling methods have been used to study the emission from electronically excited C2 radicals in microwave-activated dilute methane/hydrogen gas mixtures under processing conditions relevant to the chemical vapor deposition (CVD) of diamond. Obvious differences in the spatial distributions of the much-studied C2(d3Πg-a3Πu) Swan band emission and the little-studied, higher-energy C2(C1Πg-A1Πu) emission are rationalized by invoking a chemiluminescent (CL) reactive source, most probably involving collisions between H atoms and C2H radicals, that acts in tandem with the widely recognized electron impact excitation source term. The CL source is relatively much more important for forming C2(d) state radicals and is deduced to account for >40% of C2(d) production in the hot plasma core under base operating conditions, which should encourage caution when estimating electron or gas temperatures from C2 Swan band emission measurements. Studies at higher pressures (p ≈ 400 Torr) offer new insights into the plasma constriction that hampers efforts to achieve higher diamond CVD rates by using higher processing pressures. Plasma constriction is proposed as being inevitable in regions where the local electron density (ne) exceeds some critical value (nec) and electron-electron collisions enhance the rates of H2 dissociation, H-atom excitation, and related associative ionization processes relative to those prevailing in the neighboring nonconstricted plasma region. The 2D modeling identifies a further challenge to high-p operation. The radial uniformities of the CH3 radical and H-atom concentrations above the growing diamond surface both decline with increasing p, which are likely to manifest as less spatially uniform diamond growth (in terms of both rate and quality).

SELECTION OF CITATIONS
SEARCH DETAIL
...