Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Forum ; 14(6): 323-328, 2023.
Article in English | MEDLINE | ID: mdl-37383651

ABSTRACT

Programmed death ligand-1 (PD-L1, CD274 and B7-H1) has been described as a ligand for immune inhibitory receptor programmed death protein 1 (PD-1). With binding to PD-1 on activated T cells, PD-L1 can prevent T cell responses via motivating apoptosis. Consequently, it causes cancers immune evasion and helps the tumor growth; hence, PD-L1 is regarded as a therapeutic target for malignant cancers. The anti-PD-L1 monoclonal antibody targeting PD-1/PD-L1 immune checkpoint has attained remarkable outcomes in clinical application and has turned to one of the most prevalent anti-cancer drugs. The present study aimed to develop polyclonal heavy chain antibodies targeting PD-L1via Camelus dromedarius immunization. The extra-cellular domain of human PD-L1 (hPD-L1) protein was cloned, expressed, and purified. Afterwards, this recombinant protein was utilized as an antigen for camel immunization to acquire polyclonal camelid sera versus this protein. Our outcomes showed that hPD-L1 protein was effectively expressed in the prokaryotic system. The antibody-based techniques, such as enzyme-linked immunosorbent assay, western blotting, and flow cytometry displayed that the hPD-L1 protein was detected by generated polyclonal antibody. Due to the advantages of multi-epitope-binding ability, our study exhibited that camelid antibody is effective to be applied significantly for detection of PD-L1 protein in essential antibody-based studies.

2.
Iran J Pharm Res ; 21(1): e132329, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36896323

ABSTRACT

Background: Overexpression of programmed cell death ligand 1 (PD-L1) in tumor cells and subsequent interaction with the programmed cell death protein 1 (PD-1) in tumor-infiltrating T cells cause an immune evasion of the tumor from cytotoxic T-cells. Therefore, inhibiting such interaction by a recombinant PD-1 can hinder tumor growth and extend the survival rate. Methods: The mouse extracellular domain of PD-1 (mPD-1) was expressed in E. coli BL21 (DE3) strain and purified using nickel affinity chromatography. The binding ability of the purified protein to human PD-L1 was studied using ELISA. Finally, the tumor-bearing mice were used to evaluate the potential antitumor effect. Results: The recombinant mPD-1 showed a significant binding capacity to human PD-L1 at the molecular level. The tumor size significantly decreased in the tumor-bearing mice after the intra-tumoral injections of mPD-1. Moreover, the survival rate increased significantly after eight weeks of monitoring. The histopathology revealed the necrosis in the tumor tissue of the control group compared to the mPD-1 received mice. Conclusions: Our outcomes propose that interaction blockade between PD-1 and PD-L1 is a promising approach for targeted tumor therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...