Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5881, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202822

ABSTRACT

The changes occurring in mRNA organization during nucleo-cytoplasmic transport and export, are not well understood. Moreover, directionality of mRNA passage through the nuclear pore complex (NPC) has not been examined within individual NPCs. Here we find that an mRNP is compact during nucleoplasmic travels compared to a more open structure after transcription and at the nuclear periphery. Compaction levels of nuclear transcripts can be modulated by varying levels of SR proteins and by changing genome organization. Nuclear mRNPs are mostly rod-shaped with distant 5'/3'-ends, although for some, the ends are in proximity. The latter is more abundant in the cytoplasm and can be modified by translation inhibition. mRNAs and lncRNAs exiting the NPC exhibit predominant 5'-first export. In some cases, several adjacent NPCs are engaged in export of the same mRNA suggesting 'gene gating'. Altogether, we show that the mRNP is a flexible structure during travels, with 5'-directionality during export.


Subject(s)
Nuclear Pore , RNA, Long Noncoding , Active Transport, Cell Nucleus/genetics , Cell Nucleus/metabolism , DEAD-box RNA Helicases/metabolism , Nuclear Pore/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , RNA Transport , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35182478

ABSTRACT

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Subject(s)
Alternative Splicing , RNA Splicing , Base Composition , Exons/genetics , Introns/genetics
3.
Viruses ; 13(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33807444

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-related herpesvirus. Like other herpesviruses, the KSHV icosahedral capsid includes a portal vertex, composed of 12 protein subunits encoded by open reading frame (ORF) 43, which enables packaging and release of the viral genome into the nucleus through the nuclear pore complex (NPC). Capsid vertex-specific component (CVSC) tegument proteins, which directly mediate docking at the NPCs, are organized on the capsid vertices and are enriched on the portal vertex. Whether and how the portal vertex is selected for docking at the NPC is unknown. Here, we investigated the docking of incoming ORF43-null KSHV capsids at the NPCs, and describe a significantly lower fraction of capsids attached to the nuclear envelope compared to wild-type (WT) capsids. Like WT capsids, nuclear envelope-associated ORF43-null capsids co-localized with different nucleoporins (Nups) and did not detach upon salt treatment. Inhibition of nuclear export did not alter WT capsid docking. As ORF43-null capsids exhibit lower extent of association with the NPCs, we conclude that although not essential, the portal has a role in mediating the interaction of the CVSC proteins with Nups, and suggest a model whereby WT capsids can dock at the nuclear envelope through a non-portal penton vertex, resulting in an infection 'dead end'.


Subject(s)
Capsid Proteins/genetics , Capsid/metabolism , Herpesvirus 8, Human/chemistry , Herpesvirus 8, Human/genetics , Nuclear Pore/metabolism , Virus Assembly , Cell Line, Tumor , Cryoelectron Microscopy , DNA, Viral/metabolism , Genome, Viral , Humans , Models, Molecular , Molecular Docking Simulation , Open Reading Frames/genetics
4.
Biochem J ; 477(1): 23-44, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31913454

ABSTRACT

The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.


Subject(s)
Active Transport, Cell Nucleus/physiology , Nuclear Pore Complex Proteins , Nuclear Pore , RNA Transport/physiology , RNA, Messenger/metabolism , Animals , Cell Nucleus/metabolism , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/metabolism , Cytoplasm/metabolism , Humans , Nuclear Envelope/metabolism , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/metabolism , RNA, Viral/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism
5.
J Cell Biol ; 218(9): 2962-2981, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31375530

ABSTRACT

Translocation of mRNA through the nuclear pore complex (NPC) requires interactions with different NPC regions. To determine the interactions that are crucial for effective mRNA export in living cells, we examined mRNA export within individual pores by applying various types of mRNA export blocks that stalled mRNPs at different stages of transition. Focusing on the major mRNA export factor NXF1, we found that initial mRNP binding to the NPC did not require NXF1 in the NPC, whereas release into the cytoplasm did. NXF1 localization in the NPC did not require RNA or RNA binding. Superresolution microscopy showed that NXF1 consistently occupied positions on the cytoplasmic side of the NPC. Interactions with specific nucleoporins were pinpointed using FLIM-FRET for measuring protein-protein interactions inside single NPCs, showing that Dbp5 helicase activity of mRNA release is conserved in yeast and humans. Altogether, we find that specific interactions on the cytoplasmic side of the NPC are fundamental for the directional flow of mRNA export.


Subject(s)
Cytoplasm/metabolism , Nuclear Pore/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus/physiology , Cell Line, Tumor , Cytoplasm/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Humans , Nuclear Pore/genetics , Nucleocytoplasmic Transport Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...