Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36230484

ABSTRACT

Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.

2.
Mol Cancer Res ; 20(1): 139-149, 2022 01.
Article in English | MEDLINE | ID: mdl-34635508

ABSTRACT

Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two most common subtypes of lung cancer. Here, to identify new, targetable molecular properties of both subtypes, we monitored changes in the levels of heme- and oxidative phosphorylation (OXPHOS)-related proteins during lung tumorigenesis. Heme is a central molecule for oxidative metabolism and ATP generation via OXPHOS. Notably, both lung ADC and SCC tumors can be induced in the genetically engineered KLLuc mouse model harboring the G12D Kras mutation and a conditional Lkb1 knockout. We found that the levels of the rate-limiting heme synthesis enzyme ALAS1 and uptake protein SLC48A1, along with OXPHOS complex subunits, progressively increased as lung tumorigenesis advanced. Our data demonstrated that elevated levels of heme- and OXPHOS-related proteins were associated with both ADC and SCC. Importantly, treatment of KLLuc mice with a heme-sequestering protein, HeSP2, that inhibits heme uptake in tumor cells effectively arrested lung tumor progression, and both ADC and SCC tumors were strongly suppressed. Additionally, HeSP2 effectively suppressed the growth of both SCC and ADC tumor xenografts in NOD/SCID mice. Further analyses indicated that HeSP2 effectively diminished OXPHOS in both ADC and SCC, reduced angiogenesis, alleviated tumor hypoxia, and suppressed cell proliferation. These results show that the advancing of lung tumorigenesis requires progressive increase in cellular heme synthesis and uptake, leading to intensified OXPHOS activity and ATP generation and promoting aggressive tumorigenic functions. IMPLICATIONS: Heme sequestration is an effective strategy for the suppression of both ADC and SCC tumor initiation and development.


Subject(s)
Adenocarcinoma of Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/blood , Heme/metabolism , Lung Neoplasms/blood , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Disease Progression , Humans , Mice , Mice, Inbred NOD , Mice, SCID
3.
Mol Cancer Ther ; 20(12): 2506-2518, 2021 12.
Article in English | MEDLINE | ID: mdl-34552010

ABSTRACT

Heme is an essential nutritional, metabolic, and signaling molecule in living organisms. Pathogenic microbes extract heme from hosts to obtain metallonutrient, while heme fuels mitochondrial respiration and ATP generation in lung tumor cells. Here, we generated small heme-sequestering proteins (HeSPs) based on bacterial hemophores. These HeSPs contain neutral mutations in the heme-binding pocket and hybrid sequences from hemophores of different bacteria. We showed that HeSPs bind to heme and effectively extracted heme from hemoglobin. They strongly inhibited heme uptake and cell proliferation and induced apoptosis in non-small cell lung cancer (NSCLC) cells, while their effects on nontumorigenic cell lines representing normal lung cells were not significant. HeSPs strongly suppressed the growth of human NSCLC tumor xenografts in mice. HeSPs decreased oxygen consumption rates and ATP levels in tumor cells isolated from treated mice, while they did not affect liver and blood cell functions. IHC, along with data from Western blotting and functional assays, revealed that HeSPs reduced the levels of key proteins involved in heme uptake, as well as the consumption of major fuels for tumor cells, glucose, and glutamine. Further, we found that HeSPs reduced the levels of angiogenic and vascular markers, as well as vessel density in tumor tissues. Together, these results demonstrate that HeSPs act via multiple mechanisms, including the inhibition of oxidative phosphorylation, to suppress tumor growth and progression. Evidently, heme sequestration can be a powerful strategy for suppressing lung tumors and likely drug-resistant tumors that rely on oxidative phosphorylation for survival.


Subject(s)
Heme/therapeutic use , Neoplasms/therapy , Animals , Disease Progression , Heme/pharmacology , Humans , Mice , Mice, Inbred NOD
4.
Cancers (Basel) ; 13(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34439295

ABSTRACT

Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-ß-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.

5.
Cancer Res ; 80(17): 3542-3555, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32546631

ABSTRACT

Multispectral optoacoustic tomography (MSOT) is an emerging noninvasive imaging modality that can detect real-time dynamic information about the tumor microenvironment in humans and animals. Oxygen enhanced (OE)-MSOT can monitor tumor vasculature and oxygenation during disease development or therapy. Here, we used MSOT and OE-MSOT to examine in mice the response of human non-small cell lung cancer (NSCLC) xenografts to a new class of antitumor drugs, heme-targeting agents heme-sequestering peptide 2 (HSP2) and cyclopamine tartrate (CycT). HSP2 inhibits heme uptake, while CycT inhibits heme synthesis in NSCLC cells, where heme is essential for ATP generation via oxidative phosphorylation. HSP2 and CycT can inhibit ATP generation and thereby suppress NSCLC cell tumorigenic functions. MSOT showed that treatment of NSCLC tumors with HSP2 or CycT reduced total hemoglobin, increased oxygen saturation, and enhanced the amplitude of response to oxygen gas breathing challenge. HSP2 and CycT normalized tumor vasculature and improved tumor oxygenation, where levels of several hypoxia markers in NSCLC tumors were reduced by treatment with HSP2 or CycT. Furthermore, treatment with HSP2 or CycT reduced levels of angiogenic factor VEGFA, its receptor VEGFR1, and vascular marker CD34. Together, our data show that heme-targeting drugs HSP2 and CycT elicit multiple tumor-suppressing functions, such as inhibiting angiogenic function, normalizing tumor vasculature, alleviating tumor hypoxia, and inhibiting oxygen consumption and ATP generation. SIGNIFICANCE: Heme-targeting agents HSP2 and CycT effectively normalize tumor vasculature and alleviate tumor hypoxia, raising the possibility of their combination with chemo-, radio-, and immunotherapies to improve antitumor efficacy.See related commentary by Tomaszewski, p. 3461.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Heme , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Mice , Oxidative Phosphorylation , Oxygen , Tumor Microenvironment
6.
Infect Genet Evol ; 19: 120-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23851022

ABSTRACT

During an ongoing diarrhea etiology surveillance in Mirzapur, Bangladesh, a rare human G6P[8] RVA strain (RVA/Human-wt/BGD/KH2288/2011/G6P[8]) was detected in a stool sample of a 7-month-old infant with acute diarrhea. Complete genotype analyses revealed that KH2288 possessed the G6-P[8]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotype constellation. Sequence analysis of the VP7 gene revealed a close phylogenetic relationship with bovine G6 strains from India, whereas, the VP4 gene segment was nearly identical to typical human P[8] strain circulating in Bangladesh and the rest of the world. Phylogenetic analysis of the remaining nine gene segments revealed a close relatedness to either animal or animal derived human RVA strain. We speculated that, strain KH2288 was a monoreassortant between a human RVA strain and a RVA strain typically infecting member of the Artiodactyla, such as cattle, goat or sheep. To our knowledge, this is the first complete genotyping report of a naturally occurring G6P[8] RVA strain, worldwide.


Subject(s)
Capsid Proteins/genetics , Rotavirus Infections/virology , Rotavirus/genetics , Feces/virology , Humans , Infant , Male , Phylogeny , Reassortant Viruses/genetics , Rotavirus/classification , Rotavirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...