Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 21(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884102

ABSTRACT

Collateral vessels play an important role in the restoration of blood flow to the ischemic tissues of stroke patients, and the quality of collateral flow has major impact on reducing treatment delay and increasing the success rate of reperfusion. Due to high spatial resolution and rapid scan time, advance imaging using the cone-beam computed tomography (CBCT) is gaining more attention over the conventional angiography in acute stroke diagnosis. Detecting collateral vessels from CBCT images is a challenging task due to the presence of noises and artifacts, small-size and non-uniform structure of vessels. This paper presents a technique to objectively identify collateral vessels from non-collateral vessels. In our technique, several filters are used on the CBCT images of stroke patients to remove noises and artifacts, then multiscale top-hat transformation method is implemented on the pre-processed images to further enhance the vessels. Next, we applied three types of feature extraction methods which are gray level co-occurrence matrix (GLCM), moment invariant, and shape to explore which feature is best to classify the collateral vessels. These features are then used by the support vector machine (SVM), random forest, decision tree, and K-nearest neighbors (KNN) classifiers to classify vessels. Finally, the performance of these classifiers is evaluated in terms of accuracy, sensitivity, precision, recall, F-Measure, and area under the receiver operating characteristics curve. Our results show that all classifiers achieve promising classification accuracy above 90% and able to detect the collateral and non-collateral vessels from images.


Subject(s)
Stroke , Cone-Beam Computed Tomography , Humans , ROC Curve , Stroke/diagnostic imaging , Support Vector Machine
2.
Sensors (Basel) ; 21(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064544

ABSTRACT

A reliability assessment is an important tool used for processing plants, since the facility consists of many loops and instruments attached and operated based on other availability; thus, a statistical model is needed to visualize the reliability of its operation. The paper focuses on the reliability assessment and prediction based on the existing statistical models, such as normal, log-normal, exponential, and Weibull distribution. This paper evaluates and visualizes the statistical reliability models optimized using MLE and considers the failure mode caused during a simulated process control operation. We simulated the failure of the control valve caused by stiction running with various flow rates using a pilot plant, which depicted the Weibull distribution as the best model to estimate the simulated process failure.

3.
Sci Rep ; 11(1): 5873, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712664

ABSTRACT

The state of Selangor, in Malaysia consist of urban and peri-urban centres with good transportation system, and suitable temperature levels with high precipitations and humidity which make the state ideal for high number of dengue cases, annually. This study investigates if districts within the Selangor state do influence each other in determining pattern of dengue cases. Study compares two different models; the Autoregressive Integrated Moving Average (ARIMA) and Ensemble ARIMA models, using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) measurement to gauge their performance tools. ARIMA model is developed using the epidemiological data of dengue cases, whereas ensemble ARIMA incorporates the neighbouring regions' dengue models as the exogenous variable (X), into traditional ARIMA model. Ensemble ARIMA models have better model fit compared to the basic ARIMA models by incorporating neighbuoring effects of seven districts which made of state of Selangor. The AIC and BIC values of ensemble ARIMA models to be smaller compared to traditional ARIMA counterpart models. Thus, study concludes that pattern of dengue cases for a district is subject to spatial effects of its neighbouring districts and number of dengue cases in the surrounding areas.


Subject(s)
Dengue/epidemiology , Models, Statistical , Algorithms , Climate , Geography , Humans , Malaysia/epidemiology
4.
ISA Trans ; 75: 236-246, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29478749

ABSTRACT

The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID.

5.
Comput Biol Med ; 43(11): 1987-2000, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24054912

ABSTRACT

Psoriasis is an incurable skin disorder affecting 2-3% of the world population. The scaliness of psoriasis is a key assessment parameter of the Psoriasis Area and Severity Index (PASI). Dermatologists typically use visual and tactile senses in PASI scaliness assessment. However, the assessment can be subjective resulting in inter- and intra-rater variability in the scores. This paper proposes an assessment method that incorporates 3D surface roughness with standard clustering techniques to objectively determine the PASI scaliness score for psoriasis lesions. A surface roughness algorithm using structured light projection has been applied to 1999 3D psoriasis lesion surfaces. The algorithm has been validated with an accuracy of 94.12%. Clustering algorithms were used to classify the surface roughness measured using the proposed assessment method for PASI scaliness scoring. The reliability of the developed PASI scaliness algorithm was high with kappa coefficients>0.84 (almost perfect agreement).


Subject(s)
Image Processing, Computer-Assisted/methods , Psoriasis/classification , Psoriasis/pathology , Algorithms , Cluster Analysis , Fuzzy Logic , Humans , Reproducibility of Results , Skin/pathology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL