Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289985

ABSTRACT

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Subject(s)
Hypertension , Transcription Factors , Animals , Humans , Mice , Cell Differentiation , Cell Proliferation/physiology , Connexins/metabolism , Hydrogen Peroxide/pharmacology , Obesity , Oxidative Stress , Proto-Oncogene Proteins c-bcl-6/metabolism , Transcription Factors/metabolism
2.
Nat Commun ; 13(1): 6405, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302779

ABSTRACT

Resistance artery vasodilation in response to hypoxia is essential for matching tissue oxygen and demand. In hypoxia, erythrocytic hemoglobin tetramers produce nitric oxide through nitrite reduction. We hypothesized that the alpha subunit of hemoglobin expressed in endothelium also facilitates nitrite reduction proximal to smooth muscle. Here, we create two mouse strains to test this: an endothelial-specific alpha globin knockout (EC Hba1Δ/Δ) and another with an alpha globin allele mutated to prevent alpha globin's inhibitory interaction with endothelial nitric oxide synthase (Hba1WT/Δ36-39). The EC Hba1Δ/Δ mice had significantly decreased exercise capacity and intracellular nitrite consumption in hypoxic conditions, an effect absent in Hba1WT/Δ36-39 mice. Hypoxia-induced vasodilation is significantly decreased in arteries from EC Hba1Δ/Δ, but not Hba1WT/Δ36-39 mice. Hypoxia also does not lower blood pressure in EC Hba1Δ/Δ mice. We conclude the presence of alpha globin in resistance artery endothelium acts as a nitrite reductase providing local nitric oxide in response to hypoxia.


Subject(s)
Nitric Oxide , Nitrite Reductases , Mice , Animals , Nitrite Reductases/genetics , Nitrite Reductases/pharmacology , Nitric Oxide/pharmacology , Nitrites , alpha-Globins/genetics , Hypoxia , Endothelium, Vascular , Hemoglobins/genetics , Vasodilation/physiology
3.
Kidney Int ; 100(2): 311-320, 2021 08.
Article in English | MEDLINE | ID: mdl-33836171

ABSTRACT

Hypertension is a major cause of cardiovascular morbidity and mortality, despite the availability of antihypertensive drugs with different targets and mechanisms of action. Here, we provide evidence that pharmacological inhibition of TMEM16A (ANO1), a calcium-activated chloride channel expressed in vascular smooth muscle cells, blocks calcium-activated chloride currents and contraction in vascular smooth muscle in vitro and decreases blood pressure in spontaneously hypertensive rats. The acylaminocycloalkylthiophene TMinh-23 fully inhibited calcium-activated TMEM16A chloride current with nanomolar potency in Fischer rat thyroid cells expressing TMEM16A, and in primary cultures of rat vascular smooth muscle cells. TMinh-23 reduced vasoconstriction caused by the thromboxane mimetic U46619 in mesenteric resistance arteries of wild-type and spontaneously hypertensive rats, with a greater inhibition in spontaneously hypertensive rats. Blood pressure measurements by tail-cuff and telemetry showed up to a 45-mmHg reduction in systolic blood pressure lasting for four-six hours in spontaneously hypertensive rats after a single dose of TMinh-23. A minimal effect on blood pressure was seen in wild-type rats or mice treated with TMinh-23. Five-day twice daily treatment of spontaneously hypertensive rats with TMinh-23 produced sustained reductions of 20-25 mmHg in daily mean systolic and diastolic blood pressure. TMinh-23 action was reversible, with blood pressure returning to baseline in spontaneously hypertensive rats by three days after treatment discontinuation. Thus, our studies provide validation for TMEM16A as a target for antihypertensive therapy and demonstrate the efficacy of TMinh-23 as an antihypertensive with a novel mechanism of action.


Subject(s)
Anoctamin-1/antagonists & inhibitors , Hypertension , Muscle, Smooth, Vascular , Vasoconstriction , Animals , Blood Pressure/drug effects , Chloride Channels , Hypertension/drug therapy , Muscle Contraction/drug effects , Rats , Rats, Inbred SHR
4.
Am J Physiol Heart Circ Physiol ; 318(5): H1041-H1048, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32196361

ABSTRACT

Discrete calcium signals within the vascular endothelium decrease with age and contribute to impaired endothelial-dependent vasodilation. Calreticulin (Calr), a multifunctional calcium binding protein and endoplasmic reticulum (ER) chaperone, can mediate calcium signals and vascular function within the endothelial cells (ECs) of small resistance arteries. We found Calr protein expression significantly decreases with age in mesenteric arteries and examined the functional role of EC Calr in vasodilation and calcium mobilization in the context of aging. Third-order mesenteric arteries from mice with or without EC Calr knockdown were examined for calcium signals and constriction to phenylephrine (PE) or vasodilation to carbachol (CCh) after 75 wk of age. PE constriction in aged mice with or without EC Calr was unchanged. However, calcium signals and vasodilation to endothelial-dependent agonist carbachol were significantly impaired in aged EC Calr knockdown mice. Ex vivo incubation of arteries with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) significantly improved vasodilation in mice lacking EC Calr. Our data suggests diminished vascular Calr expression with age can contribute to the detrimental effects of aging on endothelial calcium regulation and vasodilation.NEW & NOTEWORTHY Calreticulin (Calr) is responsible for key physiological processes in endoplasmic reticulum, especially in aging tissue. In particular, endothelial Calr is crucial to vascular function. In this study, we deleted Calr from the endothelium and aged the mice up to 75 wk to examine changes in vascular function. We found two key differences: 1) calcium events in endothelium were severely diminished after muscarinic stimulation, which 2) corresponded with a dramatic decrease in muscarinic vasodilation. Remarkably, we were able to rescue the effect of Calr deletion on endothelial-dependent vasodilatory function using tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum stress that is currently in clinical trials.


Subject(s)
Aging/metabolism , Calreticulin/metabolism , Endothelium, Vascular/metabolism , Aging/physiology , Animals , Calcium Signaling , Calreticulin/genetics , Carbachol/pharmacology , Endothelium, Vascular/physiology , Gene Deletion , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Phenylephrine/pharmacology , Taurochenodeoxycholic Acid/pharmacology , Vasoconstrictor Agents/pharmacology , Vasodilation
5.
Br J Pharmacol ; 176(11): 1635-1648, 2019 06.
Article in English | MEDLINE | ID: mdl-30710335

ABSTRACT

BACKGROUND AND PURPOSE: Coronary artery disease leads to ischaemic heart disease and ultimately myocardial infarction. Thus, it is important to determine the factors that regulate coronary blood flow. Ca2+ -activated chloride channels contribute to the regulation of arterial tone; however, their role in coronary arteries is unknown. The aim of this study was to investigate the expression and function of the main molecular correlate of Ca2+ -activated chloride channels, TMEM16A, in rat coronary arteries. EXPERIMENTAL APPROACH: We performed mRNA and protein analysis, electrophysiological studies of coronary artery myocytes, and functional studies of coronary artery contractility and coronary perfusion, using novel inhibitors of TMEM16A. Furthermore, we assessed whether any changes in expression and function occurred in coronary arteries from spontaneously hypertensive rats (SHRs). KEY RESULTS: TMEM16A was expressed in rat coronary arteries. The TMEM16A-specific inhibitor, MONNA, hyperpolarised the membrane potential in U46619. MONNA, T16Ainh -A01, and Ani9 attenuated 5-HT/U46619-induced contractions. MONNA and T16Ainh -A01 also increased coronary flow in Langendorff perfused rat heart preparations. TMEM16A mRNA was increased in coronary artery smooth muscle cells from SHRs, and U46619 and 5-HT were more potent in arteries from SHRs than in those from normal Wistar rats. MONNA diminished this increased sensitivity to U46619 and 5-HT. CONCLUSIONS AND IMPLICATIONS: In conclusion, TMEM16A is a key regulator of coronary blood flow and is implicated in the altered contractility of coronary arteries from SHRs.


Subject(s)
Anoctamin-1/physiology , Coronary Circulation , Coronary Vessels/physiology , Hypertension/physiopathology , Myocytes, Smooth Muscle/physiology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Acetamides/pharmacology , Animals , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Coronary Circulation/drug effects , Coronary Vessels/drug effects , Hydrazones/pharmacology , Male , Myocytes, Smooth Muscle/drug effects , Pyrimidines/pharmacology , Rats, Inbred SHR , Rats, Wistar , Serotonin/pharmacology , Thiazoles/pharmacology , Vasoconstrictor Agents/pharmacology , ortho-Aminobenzoates/pharmacology
6.
Arterioscler Thromb Vasc Biol ; 38(9): 2065-2078, 2018 09.
Article in English | MEDLINE | ID: mdl-30026274

ABSTRACT

Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.


Subject(s)
Blood Pressure/physiology , Caveolin 1/metabolism , Connexins/metabolism , Homeostasis , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nerve Tissue Proteins/metabolism , Adenosine Triphosphate/metabolism , Adrenergic alpha-1 Receptor Agonists/pharmacology , Animals , Cell Membrane/metabolism , Cells, Cultured , Humans , Male , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/innervation , Phenylephrine/pharmacology , Sympathetic Nervous System/physiology , Vasoconstriction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...