Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 18583, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122788

ABSTRACT

The ability to ablate a gene in a given tissue by generating a conditional knockout (cKO) is crucial for determining its function in the targeted tissue. Such tissue-specific ablation is even more critical when the gene's conventional knockout (KO) is lethal, which precludes studying the consequences of its deletion in other tissues. Therefore, here we describe a successful strategy that generated a Matrix Gla floxed mouse (Mgp.floxed) by the CRISPR/Cas9 system, that subsequently allowed the generation of cKOs by local viral delivery of the Cre-recombinase enzyme. MGP is a well-established inhibitor of calcification gene, highly expressed in arteries' smooth muscle cells and chondrocytes. MGP is also one of the most abundant genes in the trabecular meshwork, the eye tissue responsible for maintenance of intraocular pressure (IOP) and development of Glaucoma. Our strategy entailed one-step injection of two gRNAs, Cas9 protein and a long-single-stranded-circular DNA donor vector (lsscDNA, 6.7 kb) containing two loxP sites in cis and 900-700 bp 5'/3' homology arms. Ocular intracameral injection of Mgp.floxed mice with a Cre-adenovirus, led to an Mgp.TMcKO mouse which developed elevated IOP. Our study discovered a new role for the Mgp gene as a keeper of physiological IOP in the eye.


Subject(s)
Calcium-Binding Proteins/physiology , Extracellular Matrix Proteins/physiology , Eye/physiopathology , Intraocular Pressure , Trabecular Meshwork/physiopathology , Animals , Base Sequence , Female , Glaucoma/physiopathology , Integrases/metabolism , Mice , Mice, Knockout , RNA, Guide, Kinetoplastida/administration & dosage , Matrix Gla Protein
2.
Gene Ther ; 27(3-4): 127-142, 2020 04.
Article in English | MEDLINE | ID: mdl-31611639

ABSTRACT

The trabecular meshwork (TM) of the eye is responsible for maintaining physiological intraocular pressure (IOP). Dysfunction of this tissue results in elevated IOP, subsequent optic nerve damage and glaucoma, the world's leading cause of irreversible blindness. IOP regulation by delivering candidate TM genes would offer an enormous clinical advantage to the current daily-drops/surgery treatment. Initially, we showed that a double-stranded AAV2 (scAAV2) transduced the human TM very efficiently, while its single-stranded form (ssAAV2) did not. Here, we quantified transduction and entry of single- and double-strand serotypes 1, 2.5, 5, 6, 8, and 9 in primary, single individual-derived human TM cells (HTM). scAAV2 exhibited highest transduction in all individuals, distantly followed by scAAV2.5, scAAV6, and scAAV5. Transduction of scAAV1, scAAV8, and scAAV9 was negligible. None of the ssAAV serotypes transduced, but their cell entries were significantly higher than those of their corresponding scAAV. Tyrosine scAAV2 capsid mutants increased transduction in HTM cultured cells and all TM-outflow layers of perfused postmortem human eyes. These studies provide the first serotype optimization for gene therapy of glaucoma in humans. They further reveal biological differences between the AAV forms in HTM cells, whose understanding could contribute to the development of gene therapy of glaucoma.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Glaucoma/therapy , Transduction, Genetic/methods , Aged , Cells, Cultured , Female , Humans , Male , Middle Aged , Trabecular Meshwork/cytology , Trabecular Meshwork/metabolism , Transduction, Genetic/standards
3.
Invest Ophthalmol Vis Sci ; 59(2): 746-756, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29392320

ABSTRACT

Purpose: Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Methods: Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. Results: The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. Conclusions: The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally.


Subject(s)
Calcium-Binding Proteins/genetics , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Gene Expression Regulation/physiology , Glaucoma/genetics , Luminescent Proteins/genetics , Retinal Neovascularization/genetics , Trabecular Meshwork/metabolism , Animals , Choroidal Neovascularization/genetics , Crosses, Genetic , Electroretinography , Female , Fluorescent Dyes , Integrases , Intraocular Pressure , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Retina/physiology , Retinal Neovascularization/physiopathology , Matrix Gla Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...