Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Mar Environ Res ; 176: 105608, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35358909

ABSTRACT

Seagrass meadows store significant carbon stocks at a global scale, but land-use change and other anthropogenic activities can alter the natural process of organic carbon (Corg) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that have experienced different degrees of disturbance. The meadow at Stone Town has been highly exposed to urban development during the 20th century, while the Mbweni meadow is located in an area with relatively low impacts but historical clearing of adjacent mangroves. The results showed that the two sites had similar sedimentary Corg accumulation rates (22-25 g m-2 yr-1) since the 1940s, while during the last two decades (∼1998 until 2018) they exhibited 24-30% higher accumulation of Corg, which was linked to shifts in Corg sources. The increase in the δ13C isotopic signature of sedimentary Corg (towards a higher seagrass contribution) at the Stone Town site since 1998 points to improved seagrass meadow conditions and Corg accumulation capacity of the meadow after the relocation of a major sewage outlet in the mid-1990s. In contrast, the decrease in the δ13C signatures of sedimentary Corg in the Mbweni meadow since the early 2010s was likely linked to increased Corg run-off of mangrove/terrestrial material following mangrove deforestation. This study exemplifies two different pathways by which land-based human activities can alter the carbon storage capacity of seagrass meadows (i.e. sewage waste management and mangrove deforestation) and showcases opportunities for management of vegetated coastal Corg sinks.


Subject(s)
Carbon Sequestration , Urban Renewal , Carbon , Ecosystem , Geologic Sediments , Humans , Sewage
2.
PLoS One ; 16(9): e0257586, 2021.
Article in English | MEDLINE | ID: mdl-34547042

ABSTRACT

Seagrass meadows, and other submerged vegetated habitats, support a wide range of essential ecological services, but the true extents of these services are in many ways still not quantified. One important tool needed to assess and model many of these services is accurate estimations of the systems´ primary productivity. Such productivity estimations require an understanding of the underwater light field, especially regarding the amount of light that actually reaches the plants' photosynthetic tissue. In this study, we tested a simple practical approach to estimate leaf light exposure, relative to incoming light at the canopy, by attaching light sensitive film at different positions on leaves of Zostera marina, eelgrass, in four seagrass meadows composed of different shoot density and at two different depths. We found that the light reaching the leaves decreased linearly down through the canopy. While the upper parts of the leaves received approximately the same level of light (photosynthetic photon flux density, PPFD) as recorded with a PAR meter at the canopy top, the average light that the seagrass leaves were exposed to varied between 40 and 60% of the light on top of the canopy, with an overall average of 48%. We recommend that actual light interception is measured when assessing or modelling light depending processes in submerged vegetation, but if this is not achievable a rough estimation for vegetation similar to Z. marina would be to use a correction factor of 0.5 to compensate for the reduced light due to leaf orientation and internal shading.


Subject(s)
Ecosystem , Light , Zosteraceae/radiation effects , Photosynthesis/radiation effects , Plant Leaves/radiation effects , Zosteraceae/growth & development
3.
Sci Rep ; 10(1): 13666, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32788660

ABSTRACT

Cold-temperate seagrass (Zostera marina) meadows provide several important ecosystem services, including trapping and storage of sedimentary organic carbon and nutrients. However, seagrass meadows are rapidly decreasing worldwide and there is a pressing need for protective management of the meadows and the organic matter sinks they create. Their carbon and nutrient storage potential must be properly evaluated, both at present situation and under future climate change impacts. In this study, we assessed the effect of wave exposure on sedimentary carbon and nitrogen accumulation using existing data from 53 Z. marina meadows at the Swedish west coast. We found that meadows with higher hydrodynamic exposure had larger absolute organic carbon and nitrogen stocks (at 0-25 cm depth). This can be explained by a hydrodynamically induced sediment compaction in more exposed sites, resulting in increased sediment density and higher accumulation (per unit volume) of sedimentary organic carbon and nitrogen. With higher sediment density, the erosion threshold is assumed to increase, and as climate change-induced storms are predicted to be more common, we suggest that wave exposed meadows can be more resilient toward storms and might therefore be even more important as carbon- and nutrient sinks in the future.

4.
PLoS One ; 15(4): e0231971, 2020.
Article in English | MEDLINE | ID: mdl-32348324

ABSTRACT

Marine vegetated ecosystems such as seagrass meadows are increasingly acknowledged as important carbon sinks based on their ability to capture and store atmospheric carbon dioxide, thereby contributing to climate change mitigation. Most studies on carbon storage in marine ecosystems have focused on organic carbon, leaving inorganic carbon processes such as calcification unaccounted for, despite of their critical role in the global carbon budget. This is probably because of uncertainties regarding the role of calcification in marine carbon budgets as either atmospheric CO2 source or sink. Here, we conducted a laboratory experiment to investigate the influence of a calcifying alga (Corallina officinalis L.) on seawater carbon content, using a non-calcifying alga (Ulva lactuca L.) as a control. In a first part, algae were incubated separately while measuring changes in seawater pH, total alkalinity (TA) and total dissolved inorganic carbon (DIC). The amount of carbon used in photosynthetic uptake and production of CaCO3 was then calculated. In a second, directly following, part the algae were removed and DIC levels were allowed to equilibrate with air until the pH stabilized and the loss of CO2 to air was calculated as the difference in total DIC from the start of part one, to the end of the second part. The results showed that C. officinalis caused a significant and persistent reduction in total dissolved inorganic carbon (DIC), TA and seawater pH, while no such permanent changes were caused by U. lactuca. These findings indicate that calcification can release a significant amount of CO2 to the atmosphere and thereby possibly counteract the carbon sequestration in marine vegetated ecosystems if this CO2 is not re-fixed in the system. Our research emphasises the importance of considering algal calcification in future assessments on carbon storage in coastal areas.


Subject(s)
Carbon Dioxide/metabolism , Rhodophyta/metabolism , Calcium Carbonate/metabolism , Carbon/chemistry , Carbon/metabolism , Carbon Dioxide/chemistry , Carbon Sequestration , Ecosystem , Hydrogen-Ion Concentration , Photosynthesis , Rhodophyta/growth & development , Seawater/chemistry
5.
Ecol Evol ; 9(16): 8953-8964, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31462994

ABSTRACT

This study is the first large-scale genetic population study of a widespread climax species of seagrass, Thalassia hemprichii, in the Western Indian Ocean (WIO). The aim was to understand genetic population structure and connectivity of T. hemprichii in relation to hydrodynamic features. We genotyped 205 individual seagrass shoots from 11 sites across the WIO, spanning over a distance of ~2,700 km, with twelve microsatellite markers. Seagrass shoots were sampled in Kenya, Tanzania (mainland and Zanzibar), Mozambique, and Madagascar: 4-26°S and 33-48°E. We assessed clonality and visualized genetic diversity and genetic population differentiation. We used Bayesian clustering approaches (TESS) to trace spatial ancestry of populations and used directional migration rates (DivMigrate) to identify sources of gene flow. We identified four genetically differentiated groups: (a) samples from the Zanzibar channel; (b) Mozambique; (c) Madagascar; and (d) the east coast of Zanzibar and Kenya. Significant pairwise population genetic differentiation was found among many sites. Isolation by distance was detected for the estimated magnitude of divergence (D EST), but the three predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) also determine genetic connectivity and genetic structure. Directional migration rates indicate that Madagascar acts as an important source population. Overall, clonality was moderate to high with large differences among sampling sites, indicating relatively low, but spatially variable sexual reproduction rates. The strongest genetic break was identified for three sites in the Zanzibar channel. Although isolation by distance is present, this study suggests that the three regionally predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) rather than distance determine genetic connectivity and structure of T. hemprichii in the WIO. If the goal is to maintain genetic connectivity of T. hemprichii within the WIO, conservation planning and implementation of marine protection should be considered at the regional scale-across national borders.

6.
PLoS One ; 11(12): e0167493, 2016.
Article in English | MEDLINE | ID: mdl-27936111

ABSTRACT

Seagrass ecosystems are important natural carbon sinks but their efficiency varies greatly depending on species composition and environmental conditions. What causes this variation is not fully known and could have important implications for management and protection of the seagrass habitat to continue to act as a natural carbon sink. Here, we assessed sedimentary organic carbon in Zostera marina meadows (and adjacent unvegetated sediment) in four distinct areas of Europe (Gullmar Fjord on the Swedish Skagerrak coast, Askö in the Baltic Sea, Sozopol in the Black Sea and Ria Formosa in southern Portugal) down to ~35 cm depth. We also tested how sedimentary organic carbon in Z. marina meadows relates to different sediment characteristics, a range of seagrass-associated variables and water depth. The seagrass carbon storage varied greatly among areas, with an average organic carbon content ranging from 2.79 ± 0.50% in the Gullmar Fjord to 0.17 ± 0.02% in the area of Sozopol. We found that a high proportion of fine grain size, high porosity and low density of the sediment is strongly related to high carbon content in Z. marina sediment. We suggest that sediment properties should be included as an important factor when evaluating high priority areas in management of Z. marina generated carbon sinks.


Subject(s)
Carbon/metabolism , Ecosystem , Geologic Sediments/chemistry , Zosteraceae/physiology , Algorithms , Atlantic Ocean , Black Sea , Bulgaria , Conservation of Natural Resources/methods , Estuaries , Geography , Least-Squares Analysis , Organic Chemicals/metabolism , Particle Size , Population Density , Portugal , Sweden
7.
Environ Microbiol ; 16(4): 1029-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24147969

ABSTRACT

Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host-pathogen interactions, favouring the success of the latter.


Subject(s)
Host-Pathogen Interactions , Mytilus edulis/microbiology , Seawater/chemistry , Vibrio/physiology , Animals , Hemocytes/immunology , Hemolysis , Homeostasis , Hydrogen-Ion Concentration , Mytilus edulis/physiology , Phagocytosis , Proteolysis
8.
Environ Microbiol ; 13(10): 2738-51, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21895909

ABSTRACT

Vibrio abundance generally displays seasonal patterns. In temperate coastal areas, temperature and salinity influence Vibrio growth, whereas in tropical areas this pattern is not obvious. The present study assessed the dynamics of Vibrio in the Arabian Sea, 1-2 km off Mangalore on the south-west coast of India, during temporally separated periods. The two sampling periods were signified by oligotrophic conditions, and stable temperatures and salinity. Vibrio abundance was estimated by culture-independent techniques in relation to phytoplankton community composition and environmental variables. The results showed that the Vibrio density during December 2007 was 10- to 100-fold higher compared with the February-March 2008 period. High Vibrio abundance in December coincided with a diatom-dominated phytoplankton assemblage. A partial least squares (PLS) regression model indicated that diatom biomass was the primary predictor variable. Low nutrient levels suggested high water column turnover rate, which bacteria compensated for by using organic molecules leaking from phytoplankton. The abundance of potential Vibrio predators was low during both sampling periods; therefore it is suggested that resource supply from primary producers is more important than top-down control by predators.


Subject(s)
Phytoplankton/growth & development , Seasons , Seawater/microbiology , Vibrio/growth & development , Water Microbiology , Biomass , Diatoms/growth & development , India , Oceans and Seas , Salinity , Temperature , Tropical Climate , Vibrio/isolation & purification
9.
J Exp Zool B Mol Dev Evol ; 316(4): 276-83, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21548077

ABSTRACT

In organisms that propagate by agametic cloning, the parental body is the reproductive unit and fitness increases with clonal size, so that colonial metazoans, despite lack of experimental data, have been considered potentially immortal. Using asexual propagation rate as a measure of somatic performance, and telomerase activity and relative telomere length as molecular markers of senescence, old (7-12 years) asexual strains of a colonial ascidian, Diplosoma listerianum, were compared with their recent sexually produced progeny. We report for the first time evidence for long-term molecular senescence in asexual lineages of a metazoan, and that only passage between sexual generations provides total rejuvenation permitting indefinite propagation and growth. Thus, this colonial ascidian has not fully escaped ageing. The possibility of somatic replicative senescence also potentially helps to explain why metazoans, with the capacity for asexual propagation through agametic cloning, commonly undergo cycles of sexual reproduction in the wild.


Subject(s)
Aging/physiology , Telomerase/deficiency , Urochordata/enzymology , Animals , In Situ Hybridization, Fluorescence , Reproduction, Asexual/physiology , Species Specificity , Statistics, Nonparametric , Urochordata/physiology
10.
Appl Environ Microbiol ; 74(23): 7174-82, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18849462

ABSTRACT

Two real-time PCR assays targeting the small-subunit (SSU) ribosomal DNA (rDNA) were designed to assess the proportional biomass of diatoms and dinoflagellates in marine coastal water. The reverse primer for the diatom assay was designed to be class specific, and the dinoflagellate-specific reverse primer was obtained from the literature. For both targets, we used universal eukaryotic SSU rDNA forward primers. Specificity was confirmed by using a BLAST search and by amplification of cultures of various phytoplankton taxa. Reaction conditions were optimized for each primer set with linearized plasmids from cloned SSU rDNA fragments. The number of SSU rDNA copies per cell was estimated for six species of diatoms and nine species of dinoflagellates; these were significantly correlated to the biovolumes of the cells. Nineteen field samples were collected along the Swedish west coast and subjected to the two real-time PCR assays. The linear regression of the proportion of SSU rDNA copies of dinoflagellate and diatom origin versus the proportion of dinoflagellate and diatom biovolumes or biomass per liter was significant. For diatoms, linear regression of the number of SSU rDNA copies versus biovolume or biomass per liter was significant, but no such significant correlation was detected in the field samples for dinoflagellates. The method described will be useful for estimating the proportion of dinoflagellate versus diatom biovolume or biomass and the absolute diatom biovolume or biomass in various aquatic disciplines.


Subject(s)
Biomass , Diatoms/isolation & purification , Dinoflagellida/isolation & purification , Polymerase Chain Reaction/methods , Seawater/microbiology , Seawater/parasitology , Animals , DNA Primers/genetics , DNA, Algal/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Diatoms/genetics , Dinoflagellida/genetics , Sensitivity and Specificity , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL