Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Immunology ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742251

ABSTRACT

Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.

2.
Transpl Int ; 37: 12330, 2024.
Article in English | MEDLINE | ID: mdl-38567143

ABSTRACT

Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.


Subject(s)
Glycolysis , T-Lymphocytes, Regulatory , Humans , Cell Differentiation , Adaptive Immunity
3.
Immunology ; 171(2): 286-311, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37991344

ABSTRACT

Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.


Subject(s)
Lectins, C-Type , Melanoma , Male , Humans , Dendritic Cells , Glycoproteins , Toll-Like Receptors/metabolism , Polysaccharides/metabolism
4.
Cancers (Basel) ; 15(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190135

ABSTRACT

Evasion from immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells shaping anti-tumor immune responses, but tumor cells exploit DC versatility to subvert their functions. Unveiling the puzzling role of DCs in the control of tumor development and mechanisms of tumor-induced DC hijacking is critical to optimize current therapies and to design future efficient immunotherapies for melanoma. Dendritic cells, crucially positioned at the center of anti-tumor immunity, represent attractive targets to develop new therapeutic approaches. Harnessing the potencies of each DC subset to trigger appropriate immune responses while avoiding their subversion is a challenging yet promising step to achieve tumor immune control. This review focuses on advances regarding the diversity of DC subsets, their pathophysiology and impact on clinical outcome in melanoma patients. We provide insights into the regulation mechanisms of DCs by the tumor, and overview DC-based therapeutic developments for melanoma. Further insights into DCs' diversity, features, networking, regulation and shaping by the tumor microenvironment will allow designing novel effective cancer therapies. The DCs deserve to be positioned in the current melanoma immunotherapeutic landscape. Recent discoveries strongly motivate exploitation of the exceptional potential of DCs to drive robust anti-tumor immunity, offering promising tracks for clinical successes.

5.
Front Immunol ; 14: 1148111, 2023.
Article in English | MEDLINE | ID: mdl-37056774

ABSTRACT

In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus , Killer Cells, Natural , Antiviral Agents/therapeutic use
6.
Front Immunol ; 14: 1120434, 2023.
Article in English | MEDLINE | ID: mdl-36891308

ABSTRACT

Subversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity. Yet, the global tumor glyco-code and its impact on immunity has not been explored in melanoma. To decrypt the potential link between aberrant glycosylation patterns and immune evasion in melanoma, we investigated the melanoma tumor glyco-code through the GLYcoPROFILE™ methodology (lectin arrays), and depicted its impact on patients' clinical outcome and DC subsets' functionality. Specific glycan patterns correlated with clinical outcome of melanoma patients, GlcNAc, NeuAc, TF-Ag and Fuc motifs being associated with poor outcome, whereas Man and Glc residues elicited better survival. Strikingly, tumor cells differentially impacting cytokine production by DCs harbored distinct glyco-profiles. GlcNAc exhibited a negative influence on cDC2s, whereas Fuc and Gal displayed inhibitory impacts on cDC1s and pDCs. We further identified potential booster glycans for cDC1s and pDCs. Targeting specific glycans on melanoma tumor cells restored DCs' functionality. The tumor glyco-code was also linked to the nature of the immune infiltrate. This study unveils the impact of melanoma glycan patterns on immunity, and paves the way for innovative therapeutic options. Glycans/lectins interactions arise as promising immune checkpoints to rescue DCs from tumor' hijacking to reshape antitumor immunity and inhibit immunosuppressive circuits triggered by aberrant tumor glycosylation.


Subject(s)
Dendritic Cells , Melanoma , Male , Humans , Melanoma/pathology , Lectins , Glycosylation , Polysaccharides
7.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768214

ABSTRACT

The purpose of immune checkpoint inhibitor (ICI)-based therapies is to help the patient's immune system to combat tumors by restoring the immune response mediated by CD8+ cytotoxic T cells. Despite impressive clinical responses, most patients do not respond to ICIs. Therapeutic vaccines with autologous professional antigen-presenting cells, including dendritic cells, do not show yet significant clinical benefit. To improve these approaches, we have developed a new therapeutic vaccine based on an allogeneic plasmacytoid dendritic cell line (PDC*line), which efficiently activates the CD8+ T-cell response in the context of melanoma. The goal of the study is to demonstrate the potential of this platform to activate circulating tumor-specific CD8+ T cells in patients with lung cancer, specifically non-small-cell lung cancer (NSCLC). PDC*line cells loaded with peptides derived from tumor antigens are used to stimulate the peripheral blood mononuclear cells of NSCLC patients. Very interestingly, we demonstrate an efficient activation of specific T cells for at least two tumor antigens in 69% of patients irrespective of tumor antigen mRNA overexpression and NSCLC subtype. We also show, for the first time, that the antitumor CD8+ T-cell expansion is considerably improved by clinical-grade anti-PD-1 antibodies. Using PDC*line cells as an antigen presentation platform, we show that circulating antitumor CD8+ T cells from lung cancer patients can be activated, and we demonstrate the synergistic effect of anti-PD-1 on this expansion. These results are encouraging for the development of a PDC*line-based vaccine in NSCLC patients, especially in combination with ICIs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Leukocytes, Mononuclear/pathology , CD8-Positive T-Lymphocytes , Antigens, Neoplasm , Dendritic Cells
8.
Mol Ther Methods Clin Dev ; 28: 76-89, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36620074

ABSTRACT

Virus-like particles (VLPs) are versatile protein-based platforms that can be used as a vaccine platform mainly in infectiology. In the present work, we compared a previously designed, non-infectious, adenovirus-inspired 60-mer dodecahedric VLP to display short epitopes or a large tumor model antigen. To validate these two kinds of platforms as a potential immuno-stimulating approach, we evaluated their ability to control melanoma B16-ovalbumin (OVA) growth in mice. A set of adjuvants was screened, showing that polyinosinic-polycytidylic acid (poly(I:C)) was well suited to generate a homogeneous cellular and humoral response against the desired epitopes. In a prophylactic setting, vaccination with the VLP displaying these epitopes resulted in total inhibition of tumor growth 1 month after vaccination. A therapeutic vaccination strategy showed a delay in grafted tumor growth or its total rejection. If the "simple" epitope display on the VLP is sufficient to prevent tumor growth, then an improved engineered platform enabling display of a large antigen is a tool to overcome the barrier of immune allele restriction, broadening the immune response, and paving the way for its potential utilization in humans as an off-the-shelf vaccine.

9.
Front Immunol ; 13: 1040600, 2022.
Article in English | MEDLINE | ID: mdl-36353633

ABSTRACT

Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery.


Subject(s)
Dendritic Cells , Melanoma , Male , Humans , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Polysaccharides , Melanoma/metabolism
10.
Biomedicines ; 10(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36359404

ABSTRACT

Virus-like particles constitute versatile vectors that can be used as vaccine platforms in many fields from infectiology and more recently to oncology. We previously designed non-infectious adenovirus-inspired 60-mer dodecahedric virus-like particles named ADDomers displaying on their surface either a short epitope or a large tumor/viral antigen. In this work, we explored for the first time the immunogenicity of ADDomers exhibiting melanoma-derived tumor antigen/epitope and their impact on the features of human dendritic cell (DC) subsets. We first demonstrated that ADDomers displaying tumor epitope/antigen elicit a strong immune-stimulating potential of human DC subsets (cDC2s, cDC1s, pDCs), which were able to internalize and cross-present tumor antigen, and subsequently cross-prime antigen-specific T-cell responses. To further limit off-target effects and enhance DC targeting, we engineered specific motifs to de-target epithelial cells and improve DCs' addressing. The improved engineered platform making it possible to display large antigen represents a tool to overcome the barrier of immune allele restriction, broadening the immune response, and paving the way to its potential utilization in humans as an off-the-shelf vaccine.

11.
Clin Transl Immunology ; 11(5): e1382, 2022.
Article in English | MEDLINE | ID: mdl-35517992

ABSTRACT

Objectives: Plasmacytoid DCs (pDCs) play a critical yet enigmatic role in antitumor immunity through their pleiotropic immunomodulatory functions. Despite proof of pDC diversity in several physiological or pathological contexts, pDCs have been studied as a whole population so far in cancer. The assessment of individual pDC subsets is needed to fully grasp their involvement in cancer immunity, especially in melanoma where pDC subsets are largely unknown and remain to be uncovered. Methods: We explored for the first time the features of diverse circulating and tumor-infiltrating pDC subsets in melanoma patients using multi-parametric flow cytometry, and assessed their clinical relevance. Based on CD80, PDL1, CD2, LAG3 and Axl markers, we provided an integrated overview of the frequency, basal activation status and functional features of pDC subsets in melanoma patients together with their relationship to clinical outcome. Results: Strikingly, we demonstrated that P3-pDCs (CD80+PDL1-) accumulated within the tumor of melanoma patients and negatively correlated with clinical outcomes. The basal activation status, diversification towards P1-/P2-/P3-pDCs and functionality of several pDC subsets upon TLR7/TLR9 triggering were perturbed in melanoma patients, and were differentially linked to clinical outcome. Conclusion: Our study shed light for the first time on the phenotypic and functional heterogeneity of pDCs in the blood and tumor of melanoma patients and their potential involvement in shaping clinical outcomes. Such novelty brightens our understanding of pDC complexity, and prompts the further deciphering of pDCs' features to better apprehend and exploit these potent immune players. It highlights the importance of considering pDC diversity when developing pDC-based therapeutic strategies to ensure optimal clinical success.

12.
Cancer Res Commun ; 2(7): 577-589, 2022 07.
Article in English | MEDLINE | ID: mdl-36923280

ABSTRACT

In neuroblastoma, MYCN amplification is associated with sparse immune infiltrate and poor prognosis. Dendritic cells (DC) are crucial immune sentinels but their involvement in neuroblastoma pathogenesis is poorly understood. We observed that the migration of monocytes, myeloid and plasmacytoid DC induced by MYCN-nonamplified neuroblastoma supernatants was abrogated by the addition of anti-CCL2 antibodies, demonstrating the involvement of the CCR2/CCL2 axis in their recruitment by these tumors. Using public RNA sequencing and microarray datasets, we describe lower level of expression of CCL2 in MYCN-amplified neuroblastoma tumors, and we propose a working model for T-cell recruitment in neuroblastoma tumors in which CCL2 produced by neuroblastoma cells initiates the recruitment of monocytes, myeloid and plasmacytoid DCs. Among these cells, the CD1c+ subset may recruit T cells by means of CCL19/CCL22 secretion. In vitro, supernatants from DCs cocultured with neuroblastoma cell lines and activated contain CCL22 and CCL19, and are chemotactic for both CD4+ and CD8+ T cells. We also looked at immunomodulation induced by neuroblastoma cell lines, and found MYCN-nonamplified neuroblastoma cell lines were able to create a microenvironment where DC activation is enhanced. Overall, our findings highlight a major role for CCL2/CCR2 axis in monocytes, myeloid and plasmacytoid cells recruitment toward MYCN-nonamplified neuroblastoma, allowing further immune cell recruitment, and show that these tumors present a microenvironment that can favor DC responses. Significance: In MYCN-nonamplified neuroblastoma, CCL2 produced by neuroblastoma cells induces the recruitment of antigen-presenting cells (DCs and monocytes/macrophages), allowing infiltration by T cells, in link with CCL19 and CCL22 production, hence favoring immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Neuroblastoma , Humans , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/metabolism , Gene Amplification , Immunity , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Tumor Microenvironment/genetics
13.
Clin Transl Immunology ; 10(11): e1329, 2021.
Article in English | MEDLINE | ID: mdl-34786191

ABSTRACT

OBJECTIVES: pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long-term control of the tumor still remains a challenge. METHODS: This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. RESULTS: TLRL-activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs' activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross-talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor-infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. CONCLUSION: Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.

14.
Respir Med Res ; 80: 100845, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34242975

ABSTRACT

BACKGROUND: Immune checkpoints inhibitors (ICI) are becoming new standards of care for the treatment of non-small cell lung cancer (NSCLC), both as first (alone or in association with chemotherapy) and second line. However, no powerful predictive biomarker of therapeutic response to ICI has been found to date. It has been recently shown that microbiota composition could influence the ability of patients to respond to ICI. Indeed, the microbiota produces circulating metabolites that will subsequently act on immune system, the investigators hypothesized that plasma metabolic signature, reflecting a global microbiota function, could represent a predictive biomarker of response to ICI. METHODS: Monocentric prospective study. Primary objective is to identify baseline metabolic signature (metabolomics analysis by mass spectrometry) associated to ICI response. Secondary objectives are to link metabolic signature with microbiota composition (metagenomics analysis RNA 16S) and immune profile, and altogether with clinic response to ICI. The study will include 60 NSCLC patients treated by ICI in 1st, 2nd or 3rd line of treatment at the Grenoble Alpes University hospital (CHUGA) in 18 months. Patients that have received antibiotic or steroid treatment, 2 or 4 weeks before ICI initiation, respectively, will be excluded. Blood and feces will be collected prior to, at 2 months after ICI treatment initiation, and at 6 months or at progression. EXPECTED RESULTS: We expect to highlight a metabolic profile predictive of response to ICI. By identifying factors associated with early progression, we could avoid to treat potential non-responding patients. Moreover, by restoring a favorable microbiota, patients' ability to respond to these treatments might be restored.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/drug therapy , Prospective Studies
15.
Clin Transl Immunology ; 9(11): e1190, 2020.
Article in English | MEDLINE | ID: mdl-33282290

ABSTRACT

OBJECTIVES: Dendritic cells play a pivotal but still enigmatic role in the control of tumor development. Composed of specialised subsets (cDC1s, cDC2s, pDCs), DCs are critical in triggering and shaping antitumor immune responses. Yet, tumors exploit plasticity of DCs to subvert their functions and escape from immune control. This challenging controversy prompted us to explore the pathophysiological role of cDCs and pDCs in melanoma, where their precise and coordinated involvement remains to be deciphered. METHODS: We investigated in melanoma patients the phenotypic and functional features of circulating and tumor-infiltrating BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s and assessed their clinical impact. RESULTS: Principal component analyses (PCA) based on phenotypic or functional parameters of DC subsets revealed intra-group clustering, highlighting specific features of DCs in blood and tumor infiltrate of patients compared to healthy donors. DC subsets exhibited perturbed frequencies in the circulation and actively infiltrated the tumor site, while harbouring a higher activation status. Whereas cDC2s and pDCs displayed an altered functionality in response to TLR triggering, circulating and tumor-infiltrating cDC1s preserved potent competences associated with improved prognosis. Notably, the proportion of circulating cDC1s predicted the clinical outcome of melanoma patients. CONCLUSION: Such understanding uncovers critical and distinct impact of each DC subset on clinical outcomes and unveils fine-tuning of interconnections between DCs in melanoma. Elucidating the mechanisms of DC subversion by tumors could help designing new therapeutic strategies exploiting the potentialities of these powerful immune players and their cross-talks, while counteracting their skewing by tumors, to achieve immune control and clinical success.

16.
Clin Transl Immunology ; 9(12): e1208, 2020.
Article in English | MEDLINE | ID: mdl-33312564

ABSTRACT

OBJECTIVES: C-type lectin receptors (CLRs) are key receptors used by DCs to orchestrate responses to pathogens. During infections, the glycan-lectin interactions shape the virus-host interplay and viruses can subvert the function of CLRs to escape antiviral immunity. Recognition of virus/viral components and uptake by CLRs together with subsequent signalling cascades are crucial in initiating and shaping antiviral immunity, and decisive in the outcome of infection. Yet, the interaction of hepatitis B virus (HBV) with CLRs remains largely unknown. As HBV hijacks DC subsets and viral antigens harbour glycan motifs, we hypothesised that HBV may subvert DCs through CLR binding. METHODS: We investigated here the pattern of CLR expression on BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s from both blood and liver of HBV-infected patients and explored the ability of HBsAg to bind DC subsets through specific CLRs. RESULTS: We highlighted for the first time that the CLR repertoire of circulating and intrahepatic cDC2s, cDC1s and pDCs was perturbed in patients with chronic HBV infection and that some CLR expression levels correlated with plasma HBsAg and HBV DNA levels. We also identified candidate CLR responsible for HBsAg binding to cDCs (CD367/DCIR/CLEC4A, CD32/FcɣRIIA) and pDCs (CD369/DECTIN1/CLEC7A, CD336/NKp44) and demonstrated that HBsAg inhibited DC functions in a CLR- and glycosylation-dependent manner. CONCLUSION: HBV may exploit CLR pathways to hijack DC subsets and escape from immune control. Such advances bring insights into the mechanisms by which HBV subverts immunity and pave the way for developing innovative therapeutic strategies to restore an efficient immune control of the infection by manipulating the viral glycan-lectin axis.

17.
Cancers (Basel) ; 12(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352852

ABSTRACT

Direct-acting antivirals (DAAs) are highly effective in targeting hepatitis C virus (HCV) infections, but the incidence of HCV-related hepatocellular carcinoma (HCC) remains still high. In this study, we investigated a cohort of HCV-infected patients treated with DAAs who were followed up for 4 years after sustained virological response (SVR) achievement. Patients who developed de novo HCC following DAA treatment were compared to matched controls who did not develop HCC. These control patients were selected based on DAA treatment, sex, age, fibrosis status, and platelet counts. We evaluated serum levels of 30 immune mediators before, during, at the end of, and three months after DAA treatment using Luminex technology. We identified the immune factors associated with de novo HCC occurrence following DAA treatment. Specifically, interleukin (IL)-4 and IL-13 levels were significantly higher before start of the DAA treatment in the serum of patients who later developed HCC than in controls and stayed higher at each subsequent time point. Least absolute shrinkage and selection operator (LASSO) regression revealed IL-13 as the only strong factor associated with HCC development in this cohort of HCV patients. The difference was observed already at baseline of DAA treatment, which confirms the existence of a specific immune profile in these patients who later develop HCC.

18.
Cancers (Basel) ; 12(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962118

ABSTRACT

We appreciate the comments made on our review paper focused on possible predictive factors for responses to PD-1/PD-L1 checkpoint inhibitors in the field of hepatocellular carcinoma [...].

19.
Front Immunol ; 11: 861, 2020.
Article in English | MEDLINE | ID: mdl-32435249

ABSTRACT

Plasmacytoid DCs (pDCs) and γδT cells are both critical players in immunosurveillance against pathogens and cancer due to their ability to sense microbes and cell stress through recognition of pathogen-associated molecular patterns or altered metabolism [phosphoantigens (PAgs)]. Their unique features, high functional plasticity and ability to interact with many immune cell types allow them to bridge innate and adaptive immunity, initiating and orientating widely immune responses, hence contributing to protective and pathogenic immune responses. Yet, despite strategic and closed missions, potential interactions between pDCs and γδT cells are still unknown. Here we investigated whether there is interplay between pDCs and γδT cells and the underlying molecular mechanisms. Purified human pDCs and γδT cells were cocultured in presence of TLR-L, PAg, and zoledronate (Zol) to mimic both infectious and tumor settings. We demonstrated that TLR7/9L- or Zol-stimulated pDCs drive potent γδT-cell activation, Th1 cytokine secretion and cytotoxic activity. Conversely PAg-activated γδT cells trigger pDC phenotypic changes and functional activities. We provided evidence that pDCs and γδT cells cross-regulate each other through soluble factors and cell-cell contacts, especially type I/II IFNs and BTN3A. Such interplay could be modulated by blocking selective immune checkpoints. Our study highlighted crucial bidirectional interactions between these key potent immune players. The exploitation of pDC-γδT cells interplay represents a promising opportunity to design novel immunotherapeutic strategies and restore appropriate immune responses in cancers, infections and autoimmune diseases.


Subject(s)
Butyrophilins/metabolism , Dendritic Cells/immunology , Infections/immunology , Interferon Type I/metabolism , Interferon-gamma/metabolism , Neoplasms/immunology , T-Lymphocytes/metabolism , Butyrophilins/genetics , Cell Communication , Cell Line, Tumor , Humans , Immunotherapy , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction , T-Lymphocytes/immunology , Zoledronic Acid
20.
Oncoimmunology ; 9(1): 1738812, 2020.
Article in English | MEDLINE | ID: mdl-32313721

ABSTRACT

The efficacy of immune checkpoint inhibitors has been shown to depend on preexisting antitumor immunity; thus, their combination with cancer vaccines is an attractive therapeutic approach. Plasmacytoid dendritic cells (PDC) are strong inducers of antitumor responses and represent promising vaccine candidates. We developed a cancer vaccine approach based on an allogeneic PDC line that functioned as a very potent antigen-presenting cell in pre-clinical studies. In this phase Ib clinical trial, nine patients with metastatic stage IV melanoma received up to 60 million irradiated PDC line cells loaded with 4 melanoma antigens, injected subcutaneously at weekly intervals. The primary endpoints were safety and tolerability. The vaccine was well tolerated and no serious vaccine-induced side effects were recorded. Strikingly, there was no allogeneic response toward the vaccine, but a significant increase in the frequency of circulating anti-tumor specific T lymphocytes was observed in two patients, accompanied by a switch from a naïve to memory phenotype, thus demonstrating priming of antigen-specific T-cells. Signs of clinical activity were observed, including four stable diseases according to IrRC and vitiligoïd lesions. Four patients were still alive at week 48. We also demonstrate the in vitro enhancement of specific T cell expansion induced by the synergistic combination of peptide-loaded PDC line with anti-PD-1, as compared to peptide-loaded PDC line alone. Taken together, these clinical observations demonstrate the ability of the PDC line based-vaccine to prime and expand antitumor CD8+ responses in cancer patients. Further trials should test the combination of this vaccine with immune checkpoint inhibitors.


Subject(s)
Cancer Vaccines , Melanoma , Dendritic Cells , Humans , Immunity , Melanoma/therapy , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...