Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(5): 051802, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36800478

ABSTRACT

The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector using 8.02×10^{20} protons-on-target in the NuMI beam. The sample of GeV electron neutrino interactions is the largest analyzed to date and is limited by ≃17% systematic rather than the ≃7.4% statistical uncertainties. The double-differential cross section in final-state electron energy and angle is presented for the first time, together with the single-differential dependence on Q^{2} (squared four-momentum transfer) and energy, in the range 1 GeV≤E_{ν}<6 GeV. Detailed comparisons are made to the predictions of the GENIE, GiBUU, NEUT, and NuWro neutrino event generators. The data do not strongly favor a model over the others consistently across all three cross sections measured, though some models have especially good or poor agreement in the single differential cross section vs Q^{2}.

2.
Eur Phys J C Part Fields ; 82(7): 618, 2022.
Article in English | MEDLINE | ID: mdl-35859696

ABSTRACT

DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.

3.
Phys Rev Lett ; 127(20): 201801, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860065

ABSTRACT

This Letter reports results from the first long-baseline search for sterile antineutrinos mixing in an accelerator-based antineutrino-dominated beam. The rate of neutral-current interactions in the two NOvA detectors, at distances of 1 and 810 km from the beam source, is analyzed using an exposure of 12.51×10^{20} protons-on-target from the NuMI beam at Fermilab running in antineutrino mode. A total of 121 of neutral-current candidates are observed at the far detector, compared to a prediction of 122±11(stat.)±15(syst.) assuming mixing only between three active flavors. No evidence for ν[over ¯]_{µ}→ν[over ¯]_{s} oscillation is observed. Interpreting this result within a 3+1 model, constraints are placed on the mixing angles θ_{24}<25° and θ_{34}<32° at the 90% C.L. for 0.05 eV^{2}≤Δm_{41}^{2}≤0.5 eV^{2}, the range of mass splittings that produces no significant oscillations at the near detector. These are the first 3+1 confidence limits set using long-baseline accelerator antineutrinos.

SELECTION OF CITATIONS
SEARCH DETAIL
...