Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(11): e21631, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027796

ABSTRACT

Bracon hebetor (Say) is an important parasitoid and played a suitable model role for bio control programs. Pest management through biocontrol approaches such as plant extracts is an ecologically responsive and enthusiastic means of reducing insect pests. The main objective of the present research was to discover the efficiency and susceptibility periods of plant extracts for the assessment of parasitoids. The toxicity of five plants (Cymbopogon nardus, Azadirachta indica, Syzygium aromaticum, Datura stramonium and Parthenium hysterophorus) extracts were evaluated against B. hebetor to detect the possible way forward to controlling insect pests along with the adverse effects on beneficial insects. The data was recorded regarding mortality of B. hebetor, after calculated time periods with different intervals of up to 2 days. Datasets were followed by a statistical probe which exhibited significant results. The extracts of C. nardus, A. indica, S. aromaticum and D. stramonium exhibited non-toxic effects, whereas P. hysterophorus indicated low toxicity annotations against investigated parasitoid. These investigations suggested that four plants examined are not hazardous to the parasitoids whereas P. hysterophorus somehow has detrimental effects at low toxicity levels. Further development of insecticide resistance mechanisms in the parasitoid favors the enhancement of parasitoid efficacy with plant extracts. The possible selective use of these plant extracts and their effects on the safety period of parasitoids for integration with other approaches in sustainable pest management programs is discussed.

2.
Insects ; 14(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37999054

ABSTRACT

The deterioration of stored wheat due to pest infestations is a significant concern, with pests like Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, Sitophilus oryzae, Oryzaephilus surinamensis, and Trogoderma granarium being major contributors. This study examined the efficacy of spinosad and alpha-cypermethrin, individually and in combination, against these pests under laboratory conditions. Spinosad was tested at two concentrations (0.05 and 0.1 mg/kg), while alpha-cypermethrin was applied at 0.05 mg/kg. The combined application of both insecticides led to significantly higher pest mortality compared to single treatments. Importantly, all treatments caused substantial pest mortality and exhibited the ability to suppress pest progeny production over time, as observed in both laboratory and persistence trials. Among the various treatment combinations, the joint application of 0.1 mg/kg spinosad and 0.05 mg/kg alpha-cypermethrin emerged as the most effective, resulting in elevated mortality and a marked reduction in pest progeny. Rhyzopertha dominica exhibited the highest susceptibility among the pests, followed by S. oryzae, T. castaneum, C. ferrugineus, O. surinamensis, and T. granarium. The remarkable performance of the joint action of alpha-cypermethrin and spinosad at low doses highlights this combination as an efficacious approach for safeguarding stored grain against these destructive insect pests, warranting further exploration.

3.
Environ Sci Pollut Res Int ; 30(14): 41864-41877, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640233

ABSTRACT

The current study evaluates the efficacy of the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae), diatomaceous earth (DE) (Protect-It), and the oxadiazine indoxacarb, at single or combined applications on wheat kernels, for the management of the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae), the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), and the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). The study was conducted between November 2020 and August 2021 in Faisalabad under a complete randomized block design. The combination of DE + indoxacarb was the most efficient as it caused higher overall mortalities ranging between 59.34 and 100%, and lower overall progeny production ranging between 8.35 and 33.70 individuals per vial, than all other treatments. Beauveria bassiana alone exhibited the lowest mortality rates ranging between 22.33 and 47.76%, and the highest offspring emergence, ranging between 51.33 and 78.55 individuals per vial. Similar pattern was observed when persistence bioassays were conducted. For a period of 120 days, the DE + indoxacarb was the most powerful combination against all tested species, providing overall mortality rates between 17.06 and 63.80%. The overall progeny production was lower for the insect individuals exposed on wheat treated with the DE + indoxacarb combination, ranging between 13.66 and 52.23 individuals per vial, and higher for those exposed to B. bassiana alone, ranging between 44.03 and 107.67 individuals per vial, for the entire duration of storage. However, the efficacy of all treatments decreased gradually during the course of storage. The findings of the current study indicate that the combinations of entomopathogenic fungi, DE, and indoxacarb can be used for the prolonged protection of stored wheat from the tested noxious insect species of stored products. Further research, which will include other inert dusts in combination with entomopathogenic fungi and indoxacarb, may provide additional knowledge towards an effective management of noxious species occurring in storages.


Subject(s)
Beauveria , Coleoptera , Hypocreales , Insecticides , Animals , Diatomaceous Earth , Insecta , Triticum
4.
Saudi J Biol Sci ; 30(2): 103518, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36561334

ABSTRACT

Due to the increased production of polyacrylamide microplastics in the environment impacting the adverse effects on aquatic organisms have become a global concern. The present study aimed to evaluate the toxicity of different concentrations (0.018, 0.03 0.09 g/1) of polyacrylamide microplastics on Oreochromis niloticus. Polyacrylamide microplastics were characterized by Fourier transform infrared and Raman spectroscopy. The FTIR technique revealed the spherical morphology and size range of polyacrylamide (0.1-0.4 mm) with 99 % purity. Raman Spectroscopy results showed peaks around (1100 cm-1 and 1650 cm-1) in gills, these peaks confirmed the presence of polyacrylamide microplastics in the gills of Oreochromis niloticus. Polyacrylamide microplastics significantly shortened the antioxidant enzymes (Catalase and Reduced glutathione) proceedings and the increase was observed in Malondialdehyde and Lipid peroxide levels in high-dose treated groups. Moreover, total protein contents were expressively increased, while other blood parameters (AST, ALP, ALT) were significantly decreased. Hemoglobin (g/dl), Erythrocyte (106/µl) and TLC (1x109/l) levels were reduced significantly (p < 0.05) in high concentrations. The administration of polyacrylamide microplastics induced different histological changes in the gills, liver and intestine of O. niloticus. It was concluded that polyacrylamide microplastics are toxic agents having harmful effects on fish health.

5.
Saudi J Biol Sci ; 29(5): 3408-3413, 2022 May.
Article in English | MEDLINE | ID: mdl-35844414

ABSTRACT

Major objective of this study was to explore the protective effect of the methanolic extract of Chenopodium album against carbon tetrachloride induced hepatotoxicity in rats. Chenopodium album has locally been used for multiple medicinal proposes. Methanolic extract of Chenopodium album (whole plant) was prepared with Soxhlet extractor and rotatory evaporator. Antioxidant activity of Chenopodium album was determined by DPPH free radical scavenging assay. Thirty Wister (albino) rats (150-200 g) were divided into six groups for the evaluation of hepatoprotective potential of different concentrations of Chenopodium album against carbon tetrachloride (1:1 CCl4: Olive oil) under the controlled laboratory conditions. Group-I rats were administrated with olive oil (Normal control), Group-II with CCl4 only, Group-III with Silymarin (positive control), Group-IV with Chenopodium album (100 mg/kg), Group-V with Chenopodium album (200 mg/kg) and Group-VI rats with Chenopodium album (300 mg/kg) for the period of 28 days. Serum was taken to determine the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, cholesterol, triglyceride, creatinine and urea in the blood. Formalin stored tissues were examined for histopathological analysis. DPPH assay showed that Chenopodium album has the potential for reduction of oxidative stress. Chenopodium album minimized the levels of ALT (70 ± 8.68 U/L, 68.75 ± 8.38 U/L & 73.5 ± 10.28 U/L), AST (219.5 ± 19.16 U/L, 140.75 ± 13.35 U/L & 221.25 ± 13.33 U/L) and ALP (289.5 ± 28.21 U/L, 258 ± 11.12 U/L & 248.25 ± 4.03 U/L) at different concentrations (100 mg/kg, 200 mg/kg, 300 mg/kg respectively). Chenopodium album enhanced triglyceride level (64.75 ± 12.66 mg/dl at 200 mg/kg) as compared to CCl4 treated group (33.25 ± 1.26 mg/dl). Carbon tetrachloride elevated urea level (43.25 ± 6.6) was decreased by high dose of Chenopodium album (18 ± 8.17). Moreover, Chenopodium album also improved WBC level (9.69 × 103 /Cu.mr & 10.59 × 103 /Cu.mr at low and medium doses respectively), RBCs level (6.97 × 103 /Cu.mr) and hemoglobin level (13.95 G/dL, 13.467 G/dL & 14.05 G/dL at low, medium and high doses). In vivo study of Chenopodium album methanolic extract demonstrates the potential for protection of liver and after pre-clinical studies the plant can be used as a safe alternative of commercially available hepatoprotective medicines.

6.
Anticancer Agents Med Chem ; 22(1): 30-39, 2022.
Article in English | MEDLINE | ID: mdl-33874875

ABSTRACT

The identification and development of radioprotective agents have emerged as a subject matter of research during recent years due to the growing usage of ionizing radiation in different areas of human life. Previous work on synthetic radioprotectors has achieved limited progress because of the numerous issues associated with toxicity. Compounds extracted from plants have the potential to serve as lead candidates for developing ideal radioprotectors due to their low cost, safety, and selectivity. Polyphenols are the most abundant and commonly dispersed group of biologically active molecules possessing a broad range of pharmacological activities. Polyphenols have displayed efficacy for radioprotection during various investigations and can be administered at high doses with lesser toxicity. Detoxification of free radicals, modulating inflammatory responses, DNA repair, stimulation of hematopoietic recovery, and immune functions are the main mechanisms for radiation protection with polyphenols. Epicatechin, epigallocatechin-3-gallate, apigenin, caffeic acid phenylethylester, and silibinin provide cytoprotection together with the suppression of many pro-inflammatory cytokines owing to their free radical scavenging, anti-oxidant, and anti-inflammatory properties. Curcumin, resveratrol, quercetin, gallic acid, and rutin's radioprotective properties are regulated primarily by the direct or indirect decline in cellular stress. Thus, polyphenols may serve as potential candidates for radioprotection in the near future; however, extensive investigations are still required to better understand their protection mechanisms.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Neoplasms/prevention & control , Polyphenols/pharmacology , Animals , Antineoplastic Agents/chemistry , Biological Products/chemistry , Humans , Polyphenols/chemistry , Radiation, Ionizing
7.
Comb Chem High Throughput Screen ; 25(7): 1181-1186, 2022.
Article in English | MEDLINE | ID: mdl-34391377

ABSTRACT

Oxalis corniculata (Oxalidaceae) is a small decumbent and delicate appearing medicinal herb flourishing in warm temperate and tropical domains such as Pakistan and India. Main bioactive chemical constituents of Oxalis plant include several alkaloids, flavonoids, terpenoids, cardiac glycosides, saponins, and phlobatannins, along with steroids. Due to its polyphenolic, glycosides and flavonoid profile, it is proved to be protective in numerous ailments and exhibit various biological activities such as anti-fungal, anti-cancer, anti-oxidant, antibacterial, anti-diabetic, and cardioprotective. Moreover, bioactive phytochemicals from this plant possess significant wound healing potential. Our current effort intends to emphasize on the immense significance of this plant species, which have not been the subject matter of clinical trials and effective pharmacological studies, even though its favored usage has been stated. This review proposes that Oxalis corniculata possess a potential for the cure of various diseases. However, further researches on isolation and characterization of bioactive compounds along with pre-clinical trials are compulsory to figure out its pharmacological applications.


Subject(s)
Oxalidaceae , Plants, Medicinal , Anti-Bacterial Agents/pharmacology , Antioxidants , Flavonoids/pharmacology , Oxalidaceae/chemistry , Phytochemicals , Plant Extracts/chemistry , Plants, Medicinal/chemistry
8.
Ecotoxicol Environ Saf ; 221: 112436, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34171689

ABSTRACT

Nanoparticles (NPs), as a novel source of industrial materials, have been extensively used in recent years which ultimately ends up in soils and may cause toxic effects on plants. Gibberellic acid (GA), phytohormone, has ability to minimize abiotic stresses in plants. The role of GA in minimizing titanium dioxide (TiO2) NPs stress in plants is still unknown. In current study, soil was spiked with TiO2 NPs (0, 100, 200, 400, 600 mg/kg) while GA was foliar-sprayed at different concentrations during wheat growth. The findings revealed that TiO2 NPs increased the growth, chlorophyll contents, and nutrient (P, K, Fe, Mn) concentrations in tissues till 400 mg/kg and then decrease was observed at 600 mg/kg level of NPs whereas the values of these parameters were higher compared to control irrespective of NPs levels. The NPs enhanced the antioxidant activities (SOD, POD, CAT, APX) and reduced the oxidative stress (EL, H2O2, MDA) in leaves over the control. Foliar GA further improved the growth, yield, nutrients and antioxidant activities while minimized the oxidative stress compared to respective sole NPs- treatments. The interactive effects of NPs and GA were dose dependent. The results proved that studied doses of TiO2 NPs were not toxic to wheat plants except the highest level (600 mg/kg) used and GA positively affected the yield of wheat under TiO2 NPs application. The GA can be used to improve crop growth in the presence of NPs which, however, needs further investigation at higher doses of TiO2 NPs in various crops.


Subject(s)
Gibberellins/pharmacology , Nanoparticles/toxicity , Titanium/toxicity , Triticum/drug effects , Antioxidants/pharmacology , Biological Transport/drug effects , Minerals/metabolism , Nutrients/metabolism , Oxidative Stress/drug effects , Plant Leaves/chemistry , Plant Leaves/metabolism , Soil Pollutants/toxicity
9.
Biomed Res Int ; 2021: 5514669, 2021.
Article in English | MEDLINE | ID: mdl-34136566

ABSTRACT

Pyruvate kinase (PK), a key enzyme that determines glycolytic activity, has been known to support the metabolic phenotype of tumor cells, and specific pyruvate kinase isoform M2 (PKM2) has been reported to fulfill divergent biosynthetic and energetic requirements of cancerous cells. PKM2 is overexpressed in several cancer types and is an emerging drug target for cancer during recent years. Therefore, this study was carried out to identify PKM2 inhibitors from natural products for cancer treatment. Based on the objectives of this study, firstly, plant extract library was established. In order to purify protein for the establishment of enzymatic assay system, pET-28a-HmPKM2 plasmid was transformed to E. coli BL21 (DE3) cells for protein expression and purification. After the validation of enzymatic assay system, plant extract library was screened for the identification of inhibitors of PKM2 protein. Out of 51 plant extracts screened, four extracts Mangifera indica (leaf, seed, and bark) and Bombex ceiba bark extracts were found to be inhibitors of PKM2. In the current study, M. indica (leaf, seed, and bark) extracts were further evaluated dose dependently against PKM2. These extracts showed different degrees of concentration-dependent inhibition against PKM2 at 90-360 µg/ml concentrations. We have also investigated the anticancer potential of these extracts against MDA-MB231 cells and generated dose-response curves for the evaluation of IC50 values. M. indica (bark and seed) extracts significantly halted the growth of MDA-MB231 cells with IC50 values of 108 µg/ml and 33 µg/ml, respectively. Literature-based phytochemical analysis of M. indica was carried out, and M. indica-derived 94 compounds were docked against three binding sites of PKM2 for the identification of PKM2 inhibitors. The results of in silico based screening have unveiled various PKM2 modulators; however, further studies are recommended to validate their PKM2 inhibitory potential via in vitro biochemical assay. The results of this study provide novel findings for possible mechanism of action of M. indica (bark and seed) extracts against TNBC via PKM2 inhibition suggesting that M. indica might be of therapeutic interest for the treatment of TNBC.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Mangifera/metabolism , Membrane Proteins/antagonists & inhibitors , Plant Extracts/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Female , Humans , Inhibitory Concentration 50 , Kinetics , Plant Bark/metabolism , Plant Leaves/metabolism , Plasmids/metabolism , Seeds/metabolism , Tetrazolium Salts , Thiazoles , Thyroid Hormones , Triple Negative Breast Neoplasms/enzymology , Thyroid Hormone-Binding Proteins
10.
Ecotoxicol Environ Saf ; 215: 112139, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33761378

ABSTRACT

Cadmium (Cd) accumulation in arable lands has become a serious matter for food security. Among various approaches, the application of nanoparticles (NPs) for remediation of contaminated water and soils is attaining more popularity worldwide. The current field experiment was executed to explore the impacts of single and combined use of ZnO NPs, Fe NPs and Si NPs on wheat growth and Cd intake by plants in a Cd-contaminated field. Wheat was sown in a field which was contaminated with Cd and was irrigated with the raw-city-effluent while NPs were applied as foliar spray alone and in all possible combinations. The data revealed that straw and grain yields were enhanced in the presence of NPs over control. Chlorophyll, carotenoids contents and antioxidants activities were enhanced while electrolyte leakage was reduced with all NPs over control. In comparison with control, Cd uptake in wheat straw was reduced by 84% and Cd uptake in grain was reduced by 99% in T8 where all three NPs were foliar-applied simultaneously. Zinc (Zn) and iron (Fe) contents were increased in those plants where ZnO and Fe NPs were exogenously applied which revealed that ZnO and Fe NPs enhanced the bio-fortification of Zn and Fe in wheat grains. Overall, foliar application of different NPs is beneficial for better wheat growth, yield, nutrients uptake and to lessen the Cd intake by plants grown in Cd-contaminated soil under real field conditions.


Subject(s)
Cadmium/metabolism , Nanoparticles/chemistry , Soil Pollutants/metabolism , Triticum/physiology , Antioxidants , Cadmium/analysis , Cadmium/toxicity , Chlorophyll , Edible Grain/chemistry , Environmental Pollution , Plant Leaves/chemistry , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Triticum/growth & development , Zinc/analysis , Zinc Oxide
11.
Int J Biol Macromol ; 179: 345-352, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33689773

ABSTRACT

Bio based polyurethane nanocomposites (renewable thermosets) show a diverse range in properties, processing components and production of smart materials for health, food, and energy sectors. In this work, polyurethane nanocomposites based on isophorone diisocyanate (IPDI), and hydroxyl terminated-polybutadiene (HTPB) incorporating clay were modified using hydroxyethyl cellulose (HLAC) to be further assessed for thermal and mechanical properties. Elastomers samples were prepared by blending clay suspension and PU prepolymer to attain clay contents of 0.3, 0.5, and 1% (weight on dry basis) along with butane diol and HLAC chain extenders. Effect of nanofiller aggregation and dispersion on the thermal degradation and surface morphology of the bionanocomposites were studied. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive X-ray (SEM/EDX) and thermal gravimetric (TG) techniques were used to investigate the interactions among PU matrix, clay nanofillers, and HLAC. Mechanical testing indicated an increase in tensile strength and a decrease in elongation at break (%) by just adding 0.3 wt% clay. The thermal stability of the bionanocomposites was improved with the addition of clay. The results of the thermal and mechanical studies demonstrated the feasibility of the bionanocomposites as strong and thermally stable elastomers with low filler loading.


Subject(s)
Bentonite/chemistry , Cellulose/analogs & derivatives , Clay/chemistry , Nanocomposites/chemistry , Polyurethanes/chemistry , Cellulose/chemistry , Mechanical Phenomena , Thermodynamics
12.
Ecotoxicol Environ Saf ; 208: 111627, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396147

ABSTRACT

A pot study was conducted to explore the effectiveness of zinc oxide nanoparticles (ZnO NPs) foliar exposure on growth and development of wheat, zinc (Zn) and cadmium (Cd) uptake in Cd-contaminated soil under various moisture conditions. Four different levels (0, 25, 50, 100 mg/L) of these NPs were foliar-applied at different time periods during the growth of wheat. Two soil moisture regimes (70% and 35% of water holding capacity) were maintained from 6 weeks of germination till plant harvesting. The results revealed that the growth of wheat increased with ZnO NPs treatments. The best results were found in 100 mg/L ZnO NPs under normal moisture level. The lowest Cd and highest Zn concentrations were also examined when 100 mg/L NPs were applied without water deficit stress. In grain, Cd concentrations decreased by 26%, 81% and 87% in normal moisture while in water deficit conditions, the Cd concentrations decreased by 35%, 66% and 81% compared to control treatment when ZnO NPs were used at 25, 50 and 100 mg/L. The foliar exposure of ZnO NPs boosted up the leaf chlorophyll contents and also decreased the oxidative stress and enhanced the leaf superoxide dismutase and peroxidase activities than the control. It can be suggested that foliar use of ZnO NPs might be an efficient way for increasing wheat growth and yield with maximum Zn and minimum Cd contents under drought stress while decreasing the chances of NPs movement to other environmental compartment which may be possible in soil applied NPs.


Subject(s)
Cadmium/toxicity , Droughts , Nanoparticles/chemistry , Soil Pollutants/toxicity , Triticum/physiology , Zinc Oxide/chemistry , Cadmium/analysis , Chlorophyll , Edible Grain/chemistry , Environmental Pollution , Oxidative Stress , Plant Leaves/chemistry , Soil , Soil Pollutants/analysis , Triticum/growth & development , Water , Zinc/analysis
13.
Curr Drug Targets ; 22(5): 488-504, 2021.
Article in English | MEDLINE | ID: mdl-33050858

ABSTRACT

Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-ß-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.


Subject(s)
Antineoplastic Agents/pharmacology , Emodin , Neoplasms , Emodin/analogs & derivatives , Emodin/pharmacology , Glucosides , Humans , Neoplasms/drug therapy , Signal Transduction
14.
Biofactors ; 46(4): 550-562, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32039535

ABSTRACT

Reprogrammed metabolism is key biochemical characteristic of malignant cells, which represents one of the emerging hallmarks of cancer. Currently, there is rising contemplation on oxidative pentose phosphate pathway (PPP) enzymes as potential therapeutic hits due to their affiliation with tumor metabolism. 6-Phosphogluconate dehydrogenase (6PGD), third oxidative decarboxylase of PPP, has received a great deal of attention during recent years due to its critical role in tumorigenesis and redox homeostasis. 6PGD has been reported to overexpress in number of cancer types and its hyperactivation is mediated through post-transcriptional and post-translational modifications by YTH domain family 2 (YTHDF2), Nrf2 (nuclear factor erythroid 2-related factor 2), EGFR (epidermal growth factor receptor) and via direct structural interactions with ME1 (malic enzyme 1). Upregulated expression of 6PGD provides metabolic as well as defensive advantage to cancer cells, thus, promoting their proliferative and metastatic potential. Moreover, enhanced 6PGD expression also performs key role in development of chemoresistance as well as radiation resistance in cancer. This review aims to discuss the historical timeline and cancer-specific role of 6PGD, pharmacological and genetic inhibitors of 6PGD and 6PGD as prognostic biomarker in order to explore its potential for therapeutic interventions. We anticipate that targeting this imperative supplier of NADPH might serve as tempting avenue to combat the deadly disease like cancer.


Subject(s)
Carcinogenesis/genetics , Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , Pentose Phosphate Pathway/genetics , Phosphogluconate Dehydrogenase/genetics , Protein Processing, Post-Translational , Antineoplastic Agents/therapeutic use , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , NADP/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neoplasms/enzymology , Neoplasms/pathology , Neoplasms/therapy , Pentose Phosphate Pathway/drug effects , Phosphogluconate Dehydrogenase/antagonists & inhibitors , Phosphogluconate Dehydrogenase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Radiation Tolerance/genetics , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
15.
J Cosmet Dermatol ; 18(6): 1968-1974, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30980606

ABSTRACT

OBJECTIVE: The current research work was initiated to develop anti-aging phytocosmetic formulation of phytoantioxidant, to evaluate their effect on human skin, and to link R parameters of skin with skin sebum and aging. METHODS: According to COLIPA, 10 healthy male volunteers, aged between 20 and 30 years, having no skin infection or other hypersensitivity disorders, were included in the study. The effect of formulation was evaluated on skin pores and skin elasticity on cheeks for 90 days at regular interval. Various parameters of visible facial pores were assessed using the Skin VisioFace®, Cutometer®, Elastometer®, and Sebumeter®. These data were compared and correlated to examine the possible relationship between visible facial pores, skin elasticity, and skin sebum. RESULTS: From R0 to R9, R0, R5, and R9 were negatively correlated with elasticity while R7 shows a positive correlation with elasticity. R7 parameter of Cutometer® was negatively correlated with facial large pores (r = -0.337, P = 0.033). R9 parameter of Cutometer® was significantly positively correlated with facial large pores (r = 0.54, P = 0.000). CONCLUSION: We could assume that the enhancement of skin elasticity would be the fundamental strategies in the prevention of size and count of visible facial pores (fine and large) by the application of formulation containing natural compounds.


Subject(s)
Cosmetics/pharmacology , Dermatologic Agents/pharmacology , Elasticity/drug effects , Face/anatomy & histology , Sebum , Skin Physiological Phenomena/drug effects , Skin/drug effects , Adult , Humans , Male , Young Adult
16.
Biomed Pharmacother ; 103: 1643-1651, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29864953

ABSTRACT

Plants have been used as medicinal agents since the origin of mankind. High cost and severe side effects associated with conventional chemotherapy has limited their general acceptability and fuel up the search for alternate options. The alternative treatment options like phytochemicals have come up with ease of availability and cost effectiveness. Owing to their general acceptance, safety, low side effects and multistep targeting in signal transduction pathways, plant derived phyto-constituents have promising anti-carcinogenic potential for skin related cancers. This leads to the surge in research of new phytochemicals for the prevention and cure of a variety of skin cancers which are major cause of morbidity and mortality in present world. Although very limited clinical data involving humans is available in literature to demonstrate favorable eff ;ects of phyto-constituents on various types of skin carcinomas yet the topical treatment with these plant derived anticancer phytochemicals is very promising. There are various mechanisms and pathways responsible for antitumor activity of plant derived medicinal compounds such as loss of mitochondrial membrane potential, release of cytochrome-c, Down regulation of Anti-apoptotic proteins and Up regulation of pro-apoptotic proteins, Activation of Caspase, Fas, FADD, p53 and c-Jun signaling pathway, Inhibition of Akt signaling pathway, phosphorylation of ERK, P13K, Raf, survivin gene, STAT 3 and NF-kB. In-vitro testing of skin cancer cell lines models offers the opportunity for identifying mechanisms of action of compounds from plant origin against variety of skin related cancers. This review thus aims at providing an overview of plant derived anti-cancer compounds which have been reported to show promising anti-carcinogenic effects against various skin cancer cell lines and on animal models. Phytochemicals that are discussed in this review include steroids, coumarines, trepenes, essential oils, alkaloids, esters, ethers, resins, phenols and flavonoids. This review also provides information about marketed formulations developed so far from plant derived compounds for skin cancer prevention and treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Plants/chemistry , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Humans , Phytochemicals/therapeutic use , Phytotherapy , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...