Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(36): 12646-12660, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37622418

ABSTRACT

Three new nickel Schiff base complexes were prepared using a two-step procedure that involves initial selective dialkylation of 2,4,6-trihydroxybenzaldehyde, followed by reaction with 1,2-phenylenediamine and nickel(II) acetate. Each of the complexes possessed the same Schiff base core but differed in the identity of the four pendant groups. All complexes were characterised by microanalysis, NMR spectroscopy and ESI mass spectrometry. In addition, two of the complexes were also characterised in the solid state using X-ray crystallography, which confirmed the presence of a square planar geometry around the metal ion. The DNA binding properties of the three nickel complexes with double stranded DNA and a range of G-quadruplex DNA structures were explored using ESI mass spectrometry, CD spectroscopy, UV melting curves, Fluorescence Resonance Energy Transfer (FRET) assays, Fluorescent Indicator Displacement (FID) assays and molecular docking studies. These techniques confirmed the ability of the three nickel complexes to bind to most of the DNA molecules examined, as well as stabilise the latter in several instances. In addition, the results of these investigations provided evidence that pendant groups with morpholine rings generally reduced DNA binding behaviour, whilst pendants featuring piperidine ring systems attached to the Schiff base core by three and not two methylene linkers often showed the greatest extent of binding or DNA stabilisation.


Subject(s)
G-Quadruplexes , Nickel , Molecular Docking Simulation , Schiff Bases , Coloring Agents
2.
Dalton Trans ; 49(15): 4843-4860, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32219227

ABSTRACT

We have prepared six new nickel Schiff base complexes via reactions of substituted benzophenones with different diamines in the presence of nickel(ii). These new complexes were then reacted with 1-(2-choroethyl)piperidine to afford a further six novel nickel(ii) Schiff base complexes bearing pendant ethylpiperidine groups. The complexes bearing the ethylpiperidine moieties had greater solubility in water, and were therefore suitable for use in DNA binding experiments. ESI mass spectra of solutions containing 4 and the parallel, tetramolecular quadruplex Q4, contained ions attributable to formation of non-covalent complexes. In contrast, no ions from non-covalent complexes were observed when the experiments were repeated using 4 and either a double stranded DNA (dsDNA) molecule (D2), or parallel Q1, a unimolecular quadruplex DNA (qDNA). The ESI-MS binding study also revealed that 14 has a significant ability to form non-covalent complexes with qDNA, but does not interact to the same extent with D2. This is supported by the large changes to the ellipticity of bands observed in the circular dichroism spectra of two different unimolecular qDNA molecules (c-kit1 and Q1), including the latter annealed under conditions designed to induce formation of alternative topologies (antiparallel and hybrid). In Fluorescent Indicator Displacement (FID) assays conducted using the new nickel complexes, 14 gave the lowest values of DC50 for experiments conducted with Q1 and Q4. Furthermore, 14 showed greater stabilisation of an antiparallel qDNA molecule in FRET assays than when the other new complexes were examined. These results highlight the potential of 14 as a lead complex for future structure/DNA binding investigations. This is reinforced by the results obtained from cytotoxicity studies performed using four of the nickel complexes, including 14, and Chinese hamster lung cancer (V79) cells, which gave IC50 values between 4 and 12 µM. These complexes were also shown to have the ability to induce apoptosis in the same cancer cell line.


Subject(s)
Coordination Complexes/chemistry , G-Quadruplexes , Nickel/chemistry , Animals , Apoptosis/drug effects , Benzophenones/chemistry , Benzophenones/pharmacology , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Cricetulus , DNA/chemistry , Diamines/chemistry , Diamines/pharmacology , Molecular Docking Simulation , Molecular Structure , Nickel/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology
3.
Dalton Trans ; 47(38): 13573-13591, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30206589

ABSTRACT

Two different series of nickel Schiff base complexes were prepared as part of a study aimed at discovering new compounds with high affinity and selectivity for quadruplex DNA (qDNA). The new complexes were prepared by modification of a literature method for synthesising N,N'-bis-(4-((1-(2-ethyl)piperidine)-oxy)salicylidene)phenylenediaminenickel(ii) (complex (1)). For Series 1 complexes, the phenylenediamine head group of the literature complex was replaced with ethylenediamine, phenanthrenediamine, R,R- and S,S-diaminocyclohexane. These complexes, as well as an asymmetric molecule featuring a naphthalene moiety on one side and a single ethyl piperidinyl salicylidene group on the other, were prepared in order to examine the effect of varying the number and position of aromatic groups on DNA binding. Series 2 complexes were isomers of those in Series 1, in which pendant ethyl piperidine groups were located at different positions. All new complexes were characterised by 1D and 2D NMR spectroscopic methods alongside microanalysis and ESI-MS. In addition, the solid state structures of eight new complexes were determined using single crystal X-ray diffraction methods. N,N'-Bis-(4-((1-(2-ethyl)piperidine)oxy)-salicylidine)diaminophenanthrenenickel(ii) (9), was shown by ESI-MS, CD spectroscopy and UV melting studies to exhibit a greater affinity towards, and ability to stabilise, dsDNA than all other complexes in the first series. ESI-MS revealed (9) to have a strong tendency to form a 1 : 1 complex with the tetramolecular, parallel qDNA molecule Q4, however it exhibited low affinity towards the parallel unimolecular qDNA molecule Q1. The enantiomeric complexes (5) and (7), featuring R,R- and S,S-diaminocyclohexane moieties, respectively, showed similar binding profiles towards all DNA molecules investigated, whereas the asymmetric complex (11), exhibited very low DNA affinity in all cases. Series 2 complexes showed very similar DNA affinity and selectivity to their isomeric counterparts in Series 1. For example, (14) and (15), both of which contain a phenylenediamine head group, showed higher affinity towards D2, Q1 and Q4, than any of the other Series 2 complexes. In addition, complex (21), which contains a meso-1,2-diphenylethylenediamine moiety, interacted strongly with Q4, but not D2 or Q1. This observation was very similar to that made previously for the isomeric complex (3).

SELECTION OF CITATIONS
SEARCH DETAIL
...