Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Cardiothorac Imaging ; 6(3): e230177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722232

ABSTRACT

Purpose To develop a deep learning model for increasing cardiac cine frame rate while maintaining spatial resolution and scan time. Materials and Methods A transformer-based model was trained and tested on a retrospective sample of cine images from 5840 patients (mean age, 55 years ± 19 [SD]; 3527 male patients) referred for clinical cardiac MRI from 2003 to 2021 at nine centers; images were acquired using 1.5- and 3-T scanners from three vendors. Data from three centers were used for training and testing (4:1 ratio). The remaining data were used for external testing. Cines with downsampled frame rates were restored using linear, bicubic, and model-based interpolation. The root mean square error between interpolated and original cine images was modeled using ordinary least squares regression. In a prospective study of 49 participants referred for clinical cardiac MRI (mean age, 56 years ± 13; 25 male participants) and 12 healthy participants (mean age, 51 years ± 16; eight male participants), the model was applied to cines acquired at 25 frames per second (fps), thereby doubling the frame rate, and these interpolated cines were compared with actual 50-fps cines. The preference of two readers based on perceived temporal smoothness and image quality was evaluated using a noninferiority margin of 10%. Results The model generated artifact-free interpolated images. Ordinary least squares regression analysis accounting for vendor and field strength showed lower error (P < .001) with model-based interpolation compared with linear and bicubic interpolation in internal and external test sets. The highest proportion of reader choices was "no preference" (84 of 122) between actual and interpolated 50-fps cines. The 90% CI for the difference between reader proportions favoring collected (15 of 122) and interpolated (23 of 122) high-frame-rate cines was -0.01 to 0.14, indicating noninferiority. Conclusion A transformer-based deep learning model increased cardiac cine frame rates while preserving both spatial resolution and scan time, resulting in images with quality comparable to that of images obtained at actual high frame rates. Keywords: Functional MRI, Heart, Cardiac, Deep Learning, High Frame Rate Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Deep Learning , Magnetic Resonance Imaging, Cine , Humans , Male , Magnetic Resonance Imaging, Cine/methods , Middle Aged , Female , Prospective Studies , Retrospective Studies , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods
2.
Radiology ; 307(5): e222878, 2023 06.
Article in English | MEDLINE | ID: mdl-37249435

ABSTRACT

Background Cardiac cine can benefit from deep learning-based image reconstruction to reduce scan time and/or increase spatial and temporal resolution. Purpose To develop and evaluate a deep learning model that can be combined with parallel imaging or compressed sensing (CS). Materials and Methods The deep learning model was built on the enhanced super-resolution generative adversarial inline neural network, trained with use of retrospectively identified cine images and evaluated in participants prospectively enrolled from September 2021 to September 2022. The model was applied to breath-hold electrocardiography (ECG)-gated segmented and free-breathing real-time cine images collected with reduced spatial resolution with use of generalized autocalibrating partially parallel acquisitions (GRAPPA) or CS. The deep learning model subsequently restored spatial resolution. For comparison, GRAPPA-accelerated cine images were collected. Diagnostic quality and artifacts were evaluated by two readers with use of Likert scales and compared with use of Wilcoxon signed-rank tests. Agreement for left ventricle (LV) function, volume, and strain was assessed with Bland-Altman analysis. Results The deep learning model was trained on 1616 patients (mean age ± SD, 56 years ± 16; 920 men) and evaluated in 181 individuals, 126 patients (mean age, 57 years ± 16; 77 men) and 55 healthy subjects (mean age, 27 years ± 10; 15 men). In breath-hold ECG-gated segmented cine and free-breathing real-time cine, the deep learning model and GRAPPA showed similar diagnostic quality scores (2.9 vs 2.9, P = .41, deep learning vs GRAPPA) and artifact score (4.4 vs 4.3, P = .55, deep learning vs GRAPPA). Deep learning acquired more sections per breath-hold than GRAPPA (3.1 vs one section, P < .001). In free-breathing real-time cine, the deep learning showed a similar diagnostic quality score (2.9 vs 2.9, P = .21, deep learning vs GRAPPA) and lower artifact score (3.9 vs 4.3, P < .001, deep learning vs GRAPPA). For both sequences, the deep learning model showed excellent agreement for LV parameters, with near-zero mean differences and narrow limits of agreement compared with GRAPPA. Conclusion Deep learning-accelerated cardiac cine showed similarly accurate quantification of cardiac function, volume, and strain to a standardized parallel imaging method. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.


Subject(s)
Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging , Male , Humans , Middle Aged , Adult , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Ventricular Function, Left , Breath Holding , Neural Networks, Computer , Reproducibility of Results
3.
Magn Reson Med ; 88(6): 2573-2582, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35916305

ABSTRACT

PURPOSE: To improve the accuracy and robustness of T1 estimation by MyoMapNet, a deep learning-based approach using 4 inversion-recovery T1 -weighted images for cardiac T1 mapping. METHODS: MyoMapNet is a fully connected neural network for T1 estimation of an accelerated cardiac T1 mapping sequence, which collects 4 T1 -weighted images by a single Look-Locker inversion-recovery experiment (LL4). MyoMapNet was originally trained using in vivo data from the modified Look-Locker inversion recovery sequence, which resulted in significant bias and sensitivity to various confounders. This study sought to train MyoMapNet using signals generated from numerical simulations and phantom MR data under multiple simulated confounders. The trained model was then evaluated by phantom data scanned using new phantom vials that differed from those used for training. The performance of the new model was compared with modified Look-Locker inversion recovery sequence and saturation-recovery single-shot acquisition for measuring native and postcontrast T1 in 25 subjects. RESULTS: In the phantom study, T1 values measured by LL4 with MyoMapNet were highly correlated with reference values from the spin-echo sequence. Furthermore, the estimated T1 had excellent robustness to changes in flip angle and off-resonance. Native and postcontrast myocardium T1 at 3 Tesla measured by saturation-recovery single-shot acquisition, modified Look-Locker inversion recovery sequence, and MyoMapNet were 1483 ± 46.6 ms and 791 ± 45.8 ms, 1169 ± 49.0 ms and 612 ± 36.0 ms, and 1443 ± 57.5 ms and 700 ± 57.5 ms, respectively. The corresponding extracellular volumes were 22.90% ± 3.20%, 28.88% ± 3.48%, and 30.65% ± 3.60%, respectively. CONCLUSION: Training MyoMapNet with numerical simulations and phantom data will improve the estimation of myocardial T1 values and increase its robustness to confounders while also reducing the overall T1 mapping estimation time to only 4 heartbeats.


Subject(s)
Magnetic Resonance Imaging , Myocardium , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reproducibility of Results
4.
J Cardiovasc Magn Reson ; 24(1): 47, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35948936

ABSTRACT

BACKGROUND: Exercise cardiovascular magnetic resonance (Ex-CMR) is a promising stress imaging test for coronary artery disease (CAD). However, Ex-CMR requires accelerated imaging techniques that result in significant aliasing artifacts. Our goal was to develop and evaluate a free-breathing and electrocardiogram (ECG)-free real-time cine with deep learning (DL)-based radial acceleration for Ex-CMR. METHODS: A 3D (2D + time) convolutional neural network was implemented to suppress artifacts from aliased radial cine images. The network was trained using synthetic real-time radial cine images simulated using breath-hold, ECG-gated segmented Cartesian k-space data acquired at 3 T from 503 patients at rest. A prototype real-time radial sequence with acceleration rate = 12 was used to collect images with inline DL reconstruction. Performance was evaluated in 8 healthy subjects in whom only rest images were collected. Subsequently, 14 subjects (6 healthy and 8 patients with suspected CAD) were prospectively recruited for an Ex-CMR to evaluate image quality. At rest (n = 22), standard breath-hold ECG-gated Cartesian segmented cine and free-breathing ECG-free real-time radial cine images were acquired. During post-exercise stress (n = 14), only real-time radial cine images were acquired. Three readers evaluated residual artifact level in all collected images on a 4-point Likert scale (1-non-diagnostic, 2-severe, 3-moderate, 4-minimal). RESULTS: The DL model substantially suppressed artifacts in real-time radial cine images acquired at rest and during post-exercise stress. In real-time images at rest, 89.4% of scores were moderate to minimal. The mean score was 3.3 ± 0.7, representing increased (P < 0.001) artifacts compared to standard cine (3.9 ± 0.3). In real-time images during post-exercise stress, 84.6% of scores were moderate to minimal, and the mean artifact level score was 3.1 ± 0.6. Comparison of left-ventricular (LV) measures derived from standard and real-time cine at rest showed differences in LV end-diastolic volume (3.0 mL [- 11.7, 17.8], P = 0.320) that were not significantly different from zero. Differences in measures of LV end-systolic volume (7.0 mL [- 1.3, 15.3], P < 0.001) and LV ejection fraction (- 5.0% [- 11.1, 1.0], P < 0.001) were significant. Total inline reconstruction time of real-time radial images was 16.6 ms per frame. CONCLUSIONS: Our proof-of-concept study demonstrated the feasibility of inline real-time cine with DL-based radial acceleration for Ex-CMR.


Subject(s)
Coronary Artery Disease , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine , Respiratory-Gated Imaging Techniques , Coronary Artery Disease/diagnostic imaging , Deep Learning , Exercise Test , Feasibility Studies , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Reproducibility of Results , Respiratory-Gated Imaging Techniques/methods
5.
NMR Biomed ; 35(11): e4794, 2022 11.
Article in English | MEDLINE | ID: mdl-35767308

ABSTRACT

The objective of the current study was to investigate the performance of various deep learning (DL) architectures for MyoMapNet, a DL model for T1 estimation using accelerated cardiac T1 mapping from four T1 -weighted images collected after a single inversion pulse (Look-Locker 4 [LL4]). We implemented and tested three DL architectures for MyoMapNet: (a) a fully connected neural network (FC), (b) convolutional neural networks (VGG19, ResNet50), and (c) encoder-decoder networks with skip connections (ResUNet, U-Net). Modified Look-Locker inversion recovery (MOLLI) images from 749 patients at 3 T were used for training, validation, and testing. The first four T1 -weighted images from MOLLI5(3)3 and/or MOLLI4(1)3(1)2 protocols were extracted to create accelerated cardiac T1 mapping data. We also prospectively collected data from 28 subjects using MOLLI and LL4 to further evaluate model performance. Despite rigorous training, conventional VGG19 and ResNet50 models failed to produce anatomically correct T1 maps, and T1 values had significant errors. While ResUNet yielded good quality maps, it significantly underestimated T1 . Both FC and U-Net, however, yielded excellent image quality with good T1 accuracy for both native (FC/U-Net/MOLLI = 1217 ± 64/1208 ± 61/1199 ± 61 ms, all p < 0.05) and postcontrast myocardial T1 (FC/U-Net/MOLLI = 578 ± 57/567 ± 54/574 ± 55 ms, all p < 0.05). In terms of precision, the U-Net model yielded better T1 precision compared with the FC architecture (standard deviation of 61 vs. 67 ms for the myocardium for native [p < 0.05], and 31 vs. 38 ms [p < 0.05], for postcontrast). Similar findings were observed in prospectively collected LL4 data. It was concluded that U-Net and FC DL models in MyoMapNet enable fast myocardial T1 mapping using only four T1 -weighted images collected from a single LL sequence with comparable accuracy. U-Net also provides a slight improvement in precision.


Subject(s)
Deep Learning , Image Interpretation, Computer-Assisted , Heart/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Myocardium , Reproducibility of Results
6.
J Cardiovasc Magn Reson ; 24(1): 6, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34986850

ABSTRACT

PURPOSE: To develop and evaluate MyoMapNet, a rapid myocardial T1 mapping approach that uses fully connected neural networks (FCNN) to estimate T1 values from four T1-weighted images collected after a single inversion pulse in four heartbeats (Look-Locker, LL4). METHOD: We implemented an FCNN for MyoMapNet to estimate T1 values from a reduced number of T1-weighted images and corresponding inversion-recovery times. We studied MyoMapNet performance when trained using native, post-contrast T1, or a combination of both. We also explored the effects of number of T1-weighted images (four and five) for native T1. After rigorous training using in-vivo modified Look-Locker inversion recovery (MOLLI) T1 mapping data of 607 patients, MyoMapNet performance was evaluated using MOLLI T1 data from 61 patients by discarding the additional T1-weighted images. Subsequently, we implemented a prototype MyoMapNet and LL4 on a 3 T scanner. LL4 was used to collect T1 mapping data in 27 subjects with inline T1 map reconstruction by MyoMapNet. The resulting T1 values were compared to MOLLI. RESULTS: MyoMapNet trained using a combination of native and post-contrast T1-weighted images had excellent native and post-contrast T1 accuracy compared to MOLLI. The FCNN model using four T1-weighted images yields similar performance compared to five T1-weighted images, suggesting that four T1 weighted images may be sufficient. The inline implementation of LL4 and MyoMapNet enables successful acquisition and reconstruction of T1 maps on the scanner. Native and post-contrast myocardium T1 by MOLLI and MyoMapNet was 1170 ± 55 ms vs. 1183 ± 57 ms (P = 0.03), and 645 ± 26 ms vs. 630 ± 30 ms (P = 0.60), and native and post-contrast blood T1 was 1820 ± 29 ms vs. 1854 ± 34 ms (P = 0.14), and 508 ± 9 ms vs. 514 ± 15 ms (P = 0.02), respectively. CONCLUSION: A FCNN, trained using MOLLI data, can estimate T1 values from only four T1-weighted images. MyoMapNet enables myocardial T1 mapping in four heartbeats with similar accuracy as MOLLI with inline map reconstruction.


Subject(s)
Deep Learning , Heart , Heart Rate , Humans , Magnetic Resonance Imaging , Predictive Value of Tests , Reproducibility of Results
7.
JACC Cardiovasc Imaging ; 15(5): 766-779, 2022 05.
Article in English | MEDLINE | ID: mdl-35033500

ABSTRACT

OBJECTIVES: The authors implemented an explainable machine learning (ML) model to gain insight into the association between cardiac magnetic resonance markers and adverse outcomes of cardiovascular hospitalization and all-cause death (composite endpoint) in patients with nonischemic dilated cardiomyopathy (NICM). BACKGROUND: Risk stratification of patients with NICM remains challenging. An explainable ML model has the potential to provide insight into the contributions of different risk markers in the prediction model. METHODS: An explainable ML model based on extreme gradient boosting (XGBoost) machines was developed using cardiac magnetic resonance and clinical parameters. The study cohorts consist of patients with NICM from 2 academic medical centers: Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women's Hospital (BWH), with 328 and 214 patients, respectively. XGBoost was trained on 70% of patients from the BIDMC cohort and evaluated based on the other 30% as internal validation. The model was externally validated using the BWH cohort. To investigate the contribution of different features in our risk prediction model, we used Shapley additive explanations (SHAP) analysis. RESULTS: During a mean follow-up duration of 40 months, 34 patients from BIDMC and 33 patients from BWH experienced the composite endpoint. The area under the curve for predicting the composite endpoint was 0.71 for the internal BIDMC validation and 0.69 for the BWH cohort. SHAP analysis identified parameters associated with right ventricular (RV) dysfunction and remodeling as primary markers of adverse outcomes. High risk thresholds were identified by SHAP analysis and thus provided thresholds for top predictive continuous clinical variables. CONCLUSIONS: An explainable ML-based risk prediction model has the potential to identify patients with NICM at risk for cardiovascular hospitalization and all-cause death. RV ejection fraction, end-systolic and end-diastolic volumes (as indicators of RV dysfunction and remodeling) were determined to be major risk markers.


Subject(s)
Cardiomyopathies , Ventricular Dysfunction, Right , Cardiomyopathies/diagnostic imaging , Female , Humans , Machine Learning , Predictive Value of Tests , Prognosis , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...