Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol In Vitro ; 96: 105763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38142784

ABSTRACT

In vitro assays remain relatively new in exploring human relevance of liver, in particular nuclear receptor-mediated perturbations of the hypothalamus-pituitary-thyroid axis seen in rodents, mainly in the rat. Consistent with in vivo data, we confirm that thyroid hormone thyroxine metabolism was 9 times higher in primary rat hepatocytes (PRH) than in primary human hepatocytes (PHH) cultured in a 2D sandwich (2Dsw) configuration. In addition, thyroxine glucuronide (T4-G) was by far the major metabolite formed in both species (99.1% in PRH and 69.7% in PHH) followed by thyroxine sulfate (T4-S, 0.7% in PRH and 18.1% in PHH) and triiodothyronine/reverse triiodothyronine (T3/rT3, 0.2% in PRH and 12.2% in PHH). After a 7-day daily exposure to orphan receptor-mediated liver inducers, T4 metabolism was strongly increased in PRH, almost exclusively through increased T4-G formation. These results were consistent with the inductions of glucuronosyltransferase Ugt2b1 and canalicular transporter Mrp2. PHH also responded to activation of the three nuclear receptors, with mainly induction of glucuronosyltransferase UGT1A1 and canalicular transporter MRP2. Despite this, T4 disappearance rate and secreted T4 metabolites were only slightly increased in PHH. Overall, our data highlight that cryopreserved hepatocytes in 2Dsw culture allowing long-term exposure and species comparison are of major interest in improving liver-mediated human safety assessment.


Subject(s)
Thyroxine , Triiodothyronine , Humans , Rats , Animals , Thyroxine/metabolism , Rats, Wistar , Triiodothyronine/pharmacology , Triiodothyronine, Reverse/metabolism , Hepatocytes/metabolism , Glucuronosyltransferase/metabolism
2.
Cell Rep ; 42(7): 112744, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37418324

ABSTRACT

Completion of neuronal migration is critical for brain development. Kif21b is a plus-end-directed kinesin motor protein that promotes intracellular transport and controls microtubule dynamics in neurons. Here we report a physiological function of Kif21b during radial migration of projection neurons in the mouse developing cortex. In vivo analysis in mouse and live imaging on cultured slices demonstrate that Kif21b regulates the radial glia-guided locomotion of newborn neurons independently of its motility on microtubules. We show that Kif21b directly binds and regulates the actin cytoskeleton both in vitro and in vivo in migratory neurons. We establish that Kif21b-mediated regulation of actin cytoskeleton dynamics influences branching and nucleokinesis during neuronal locomotion. Altogether, our results reveal atypical roles of Kif21b on the actin cytoskeleton during migration of cortical projection neurons.


Subject(s)
Kinesins , Neurons , Animals , Mice , Actin Cytoskeleton/metabolism , Cell Movement , Interneurons/metabolism , Kinesins/metabolism , Microtubules/metabolism , Neurons/metabolism
3.
Nat Commun ; 11(1): 2441, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415109

ABSTRACT

KIF21B is a kinesin protein that promotes intracellular transport and controls microtubule dynamics. We report three missense variants and one duplication in KIF21B in individuals with neurodevelopmental disorders associated with brain malformations, including corpus callosum agenesis (ACC) and microcephaly. We demonstrate, in vivo, that the expression of KIF21B missense variants specifically recapitulates patients' neurodevelopmental abnormalities, including microcephaly and reduced intra- and inter-hemispheric connectivity. We establish that missense KIF21B variants impede neuronal migration through attenuation of kinesin autoinhibition leading to aberrant KIF21B motility activity. We also show that the ACC-related KIF21B variant independently perturbs axonal growth and ipsilateral axon branching through two distinct mechanisms, both leading to deregulation of canonical kinesin motor activity. The duplication introduces a premature termination codon leading to nonsense-mediated mRNA decay. Although we demonstrate that Kif21b haploinsufficiency leads to an impaired neuronal positioning, the duplication variant might not be pathogenic. Altogether, our data indicate that impaired KIF21B autoregulation and function play a critical role in the pathogenicity of human neurodevelopmental disorder.


Subject(s)
Kinesins/genetics , Motor Activity , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Animals , Axons/metabolism , Cell Movement , Cell Proliferation , Cerebral Cortex/embryology , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Female , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Male , Mice , Mutation, Missense/genetics , Nerve Net/pathology , Nerve Net/physiopathology , Neurons/metabolism , Organ Size , Organogenesis/genetics , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish/anatomy & histology , Zebrafish/genetics
4.
Nat Commun ; 10(1): 2129, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086189

ABSTRACT

De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.


Subject(s)
Malformations of Cortical Development/genetics , Microtubules/metabolism , Neurogenesis/genetics , Neurons/physiology , Tubulin/genetics , Animals , Behavior, Animal , Cell Movement/genetics , Centrosome/metabolism , Cerebral Cortex/abnormalities , Cerebral Cortex/cytology , Cerebral Cortex/diagnostic imaging , Disease Models, Animal , Embryo, Mammalian , Epilepsy/genetics , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Knock-In Techniques , Genetic Predisposition to Disease , HeLa Cells , Humans , Intravital Microscopy , Male , Mice , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron , Microtubules/genetics , Mutation, Missense
5.
Hum Mol Genet ; 27(2): 224-238, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29077851

ABSTRACT

Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.


Subject(s)
Cilia/genetics , Kinesins/metabolism , Malformations of Cortical Development/genetics , Repressor Proteins/metabolism , Animals , Brain/metabolism , Cell Cycle/genetics , Cilia/physiology , HeLa Cells , Humans , Kinesins/genetics , Malformations of Cortical Development/metabolism , Mice , Microcephaly/metabolism , Microtubules/metabolism , Neurogenesis , Repressor Proteins/genetics , Spindle Apparatus/metabolism , Tubulin/metabolism
6.
Dev Biol ; 430(1): 129-141, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28790015

ABSTRACT

A tight regulation of neuron production is required to generate a functional cerebral cortex and is achieved by a proper balance between proliferation and differentiation of progenitor cells. Though the vitamin A (retinol) active derivative retinoic acid (RA) has been implicated as one of the signals acting during mammalian forebrain neurogenesis, its function at the onset of neurogenesis as well as during establishment of cortical layers and neuronal subtypes remains elusive. One limitation is that murine mutants for genes encoding key enzymes involved in RA synthesis die during early embryonic development. We analysed corticogenesis in Rdh10 null mutants, in which an RA deficiency is generated as the intracellular retinol to retinaldehyde conversion is abolished. When analysed at the latest stage before lethality occurs (embryonic day [E]13.5), the mutants show smaller telencephalic vesicles and the thickness of their cortical plate is strongly reduced. The first progenitors formed in the cortical plate are radial glial (RG) cells which generate neurons either directly, or through an indirect mechanism involving the production of intermediate neuronal progenitors (INPs) which then give rise to neurons. We show that in absence of RA, the RG progenitors proliferate less and prematurely produce neurons, leading to their depletion at E11.5. Furthermore, we could demonstrate that lack of RA impairs the generation of INPs at E13.5 and affects the cell cycle exit of progenitor cells during corticogenesis, altogether leading to a deficit in projection neurons and to microcephaly.


Subject(s)
Cerebral Cortex/embryology , Neurogenesis/drug effects , Tretinoin/pharmacology , Alcohol Oxidoreductases/metabolism , Animals , Cell Cycle/drug effects , Cerebral Cortex/drug effects , Cyclin D2/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Gene Deletion , Mice, Knockout , Microcephaly/pathology , Models, Biological , Stem Cells/drug effects , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL