Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Life (Basel) ; 12(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36143462

ABSTRACT

In cancer management, drug resistance remains a challenge that reduces the effectiveness of chemotherapy. Several studies have shown that curcumin resensitizes cancer cells to chemotherapeutic drugs to overcome resistance. In the present study, we investigate the potential therapeutic role of curcumin in regulating the proliferation of drug-resistant cancers. Six drug-sensitive (MCF7, HCT116, and A549) and -resistant (MCF7/TH, HCT116R, and A549/ADR) cancer cell lines were treated with curcumin followed by an analysis of cytotoxicity, LDH enzyme, total reactive oxygen species, antioxidant enzymes (SOD and CAT), fibrosis markers (TGF-ß1 protein, fibronectin, and hydroxyproline), and expression of cellular apoptotic markers (Bcl-2, Bax, Bax/Bcl-2 ratio, Annexin V, cytochrome c, and caspase-8). Additionally, the expression of cellular SIRT1 was estimated by ELISA and RT-PCR analysis. Curcumin treatment at doses of 2.7-54.3 µM significantly reduced the growth of sensitive and resistant cells as supported with decreased viability and increased cellular LDH enzyme of treated cells compared to controls non-treated cells. Curcumin also at doses of 2.7 and 54.3 µM regulated the fibrogenesis by reducing the expression of fibrotic markers in treated cells. Analysis of apoptotic markers indicated increased Bax, Bax, Bax/Bcl-2 ratio, Annexin V, caspase-8, and cytochrome c expression, while Bcl-2 expressions were significantly reduced. In curcumin-treated cells at 2.7 µM, non-significant change in ROS with significant increase in SOD and CAT activity was observed, whereas an increase in ROS with a reduction in respective antioxidant enzymes were seen at higher concentrations along with significant upregulation of SIRT1. In conclusion, the present study shows that curcumin induces anticancer activity against resistant cancer cell lines in a concentration- and time-dependent manner. The protective activities of curcumin against the growth of cancer cells are mediated by modulating oxidative stress, regulating fibrosis, SIRT1 activation, and inducing cellular apoptosis. Therefore, curcumin could be tested as an auxiliary therapeutic agent to improve the prognosis in patients with resistant cancers.

3.
Front Oncol ; 12: 891673, 2022.
Article in English | MEDLINE | ID: mdl-35646714

ABSTRACT

Replicating the naturalistic biomechanical milieu of cells is a primary requisite to uncover the fundamental life processes. The native milieu is significantly not replicated in the two-dimensional (2D) cell cultures. Alternatively, the current three-dimensional (3D) culture techniques can replicate the properties of extracellular matrix (ECM), though the recreation of the original microenvironment is challenging. The organization of cells in a 3D manner contributes to better insight about the tumorigenesis mechanism of the in vitro cancer models. Gene expression studies are susceptible to alterations in their microenvironment. Physiological interactions among neighboring cells also contribute to gene expression, which is highly replicable with minor modifications in 3D cultures. 3D cell culture provides a useful platform for identifying the biological characteristics of tumor cells, particularly in the drug sensitivity area of translational medicine. It promises to be a bridge between traditional 2D culture and animal experiments and is of great importance for further research in tumor biology. The new imaging technology and the implementation of standard protocols can address the barriers interfering with the live cell observation in a natural 3D physiological environment.

4.
Front Endocrinol (Lausanne) ; 13: 862394, 2022.
Article in English | MEDLINE | ID: mdl-35370937

ABSTRACT

The current study aims to assess the protective effects of dapagliflozin (Dapa; a sodium-glucose cotransporter-2 inhibitor) and/or liraglutide (Lira; a glucagon-like peptide 1 agonist) in an experimental model of diabetic cardiomyopathy (DCM). A single dose of streptozotocin (STZ) was administrated to male Sprague-Dawley rats by intraperitoneal injection at a dose of 50 mg/kg to induce diabetes mellitus (DM). Dapa (1 mg/kg, orally), Lira (0.4 mg/kg, s.c.), and Dapa-Lira combination were administrated for 8 weeks once-daily. Blood samples were evaluated for glucose level and biochemical markers of cardiac functions. Cardiac tissue was dissected and assessed for redox homeostasis (malondialdehyde (MDA), glutathione (GSH), and catalase (CAT)), pro-inflammatory mediators (NF-κB and tumor necrosis factor-α (TNF-α)), and apoptotic effectors (caspase-3). Moreover, the effect of treatments on the cardiac cellular structure was studied. Dapa and/or Lira administration resulted in significant improvement of biochemical indices of cardiac function. Additionally, all treatment groups demonstrated restoration of oxidant/antioxidant balance. Moreover, inflammation and apoptosis key elements were markedly downregulated in cardiac tissue. Also, histological studies demonstrated attenuation of diabetes-induced cardiac tissue injury. Interestingly, Dapa-Lira combination treatment produced a more favorable protective effect as compared to a single treatment. These data demonstrated that Dapa, Lira, and their combination therapy could be useful in protection against DM-accompanied cardiac tissue injury, shedding the light on their possible utilization as adjuvant therapy for the management of DM patients.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Sodium-Glucose Transporter 2 Inhibitors , Animals , Apoptosis , Benzhydryl Compounds , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Glucosides , Humans , Inflammation/complications , Inflammation/drug therapy , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Oxidative Stress , Rats , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
5.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35326164

ABSTRACT

Aging is a naturally occurring process inevitably affecting each living human. The brain is adversely affected by aging with increased risks of developing various neurological disorders. Thus, it is essential to investigate practical approaches that can counteract the impact of aging on the brain. Vitamin K2 (Vit. K2) is a naturally occurring vitamin with reported valuable therapeutic effects. The current study highlights the role of Vit. K2 administration in counteracting age-related changes in the brain using naturally aging rats. Three-month-old rats were assigned to two groups: an ageing control group receiving a drug vehicle and an ageing group orally gavaged with Vit. K2 (30 mg/kg, once daily 5 days per week). Treatment was continued for 17 months. Ten three-month-old rats were used as the adult control. Vit. K2 improved functional performance, reduced social anxiety, depressive-like behavior, and enhanced memory performance with concomitant preservation of hippocampal and cerebral cortex tyrosine hydroxylase expression. Biochemically, Vit. K2 administration restored oxidative-anti-oxidative homeostasis in the brain. Vit. K2 modulated inflammatory signaling, as evidenced by suppression in the brain of NLRP3, caspase-1, Il-1ß, TNFα, IL-6, and CD68 expression. Concomitantly, histopathological examination revealed consistent hippocampal and cerebral cortex improvement. Thus, it can be inferred that Vit K2 can slow down age-related changes in the brain associated with modulation of NLRP3/caspase-1/Nrf-2 signaling.

6.
Sci Rep ; 12(1): 725, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031620

ABSTRACT

The burden of diabetes mellitus (DM) and associated complications is increasing worldwide, affecting many organ functionalities including submandibular glands (SMG). The present study aims to investigate the potential ameliorative effect of glycyrrhizic acid (GA) on diabetes-induced SMG damage. Experimental evaluation of GA treatment was conducted on a rat model of type I diabetes. Animals were assigned to three groups; control, diabetic and GA treated diabetic groups. After 8 weeks, the SMG was processed for assessment of oxidative stress markers, autophagy related proteins; LC3, Beclin-1 and P62, vascular regulator ET-1, aquaporins (AQPs 1.4 and 5), SIRT1 protein expressions in addition to LC3 and AQP5 mRNA expressions. Also, parenchymal structures of the SMG were examined. GA alleviated the diabetes-induced SMG damage via restoring the SMG levels of oxidative stress markers and ET-1 almost near to the normal levels most probably via regulation of SIRT1, AQPs and accordingly LC-3, P62 and Beclin-1levels. GA could be a promising candidate for the treatment of diabetes-induced SMG damage via regulating oxidative stress, autophagy and angiogenesis.


Subject(s)
Autophagy/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/physiopathology , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Oxidative Stress/drug effects , Phytotherapy , Submandibular Gland Diseases/drug therapy , Submandibular Gland Diseases/physiopathology , Submandibular Gland/metabolism , Submandibular Gland/physiopathology , Animals , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Disease Models, Animal , Rats , Submandibular Gland Diseases/etiology , Submandibular Gland Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...