Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35670332

ABSTRACT

Our research project computed the direct health costs of patients with amyotrophic lateral sclerosis (ALS) in a Spanish multidisciplinary unit and explored the main factors associated. Besides analyzing a context with universal health care provision, we used an administrative health care dataset from the most crucial center unit treating ALS in Catalonia (80% of total patients). Our results show that the direct health cost of caring for an ALS patient in our unit was 5,158€per patient/year. This cost was not influenced by the onset of the disease, sex or age, but it increased if the patient lived near our center since this facilitates the frequency of follow-up visits. Finally, the higher the educational level, the lower the direct health costs.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/therapy , Spain , Health Care Costs
2.
Eur J Neurol ; 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36484631

ABSTRACT

INTRODUCTION: The aim of this study is to describe the frequency and distribution of SOD1 mutations in Spain, and to explore those factors contributing to their phenotype and prognosis. METHODS: Seventeen centres shared data on amyotrophic lateral sclerosis (ALS) patients carrying pathogenic or likely pathogenic SOD1 variants. Multivariable models were used to explore prognostic modifiers. RESULTS: In 144 patients (from 88 families), 29 mutations (26 missense, 2 deletion/insertion and 1 frameshift) were found in all 5 exons of SOD1, including 7 novel mutations. 2.6% of ALS patients (including 17.7% familial and 1.3% sporadic) were estimated to carry SOD1 mutations. Its frequency varied considerably between regions, due to founder events. The most frequent mutation was p.Gly38Arg (n = 58), followed by p.Glu22Gly (n = 11), p.Asn140His (n = 10), and the novel p.Leu120Val (n = 10). Most mutations were characterized by a protracted course, and some of them by atypical phenotypes. Older age of onset was independently associated with faster disease progression (exp(Estimate) = 1.03 [0.01, 0.05], p = 0.001) and poorer survival (HR = 1.05 [1.01, 1.08], p = 0.007), regardless of the underlying mutation. Female sex was independently associated to faster disease progression (exp(Estimate) = 2.1 [1.23, 3.65], p = 0.012) in patients carrying the p.Gly38Arg mutation, resulting in shorter survival compared with male carriers (236 vs 301 months). CONCLUSIONS: These data may help to evaluate the efficacy of SOD1 targeted treatments, and to expand the number of patients that might benefit from these treatments.

3.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232365

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease, both in its onset phenotype and in its rate of progression. The aim of this study was to establish whether the dysfunction of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) measured through cerebrospinal fluid (CSF) proteins and the albumin-quotient (QAlb) are related to the speed of disease progression. An amount of 246 patients diagnosed with ALS were included. CSF and serum samples were determined biochemically for different parameters. Survival analysis based on phenotype shows higher probability of death for bulbar phenotype compared to spinal phenotype (p-value: 0.0006). For the effect of CSF proteins, data shows an increased risk of death for spinal ALS patients as the value of CSF proteins increases. The same model replicated for CSF albumin yielded similar results. Statistical models determined that the lowest cut-off value for CSF proteins able to differentiate patients with a good prognosis and worse prognosis corresponds to CSF proteins ≥ 0.5 g/L (p-value: 0.0189). For the CSF albumin, the QAlb ≥0.65 is associated with elevated probability of death (p-value: 0.0073). High levels of QAlb are a bad prognostic indicator for the spinal phenotype, in addition to high CSF proteins levels that also act as a marker of poor prognosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Albumins/metabolism , Biomarkers/metabolism , Blood-Brain Barrier/metabolism , Cerebrospinal Fluid Proteins , Humans , Prognosis
4.
J Neuropathol Exp Neurol ; 80(3): 229-239, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33421065

ABSTRACT

Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Frontal Lobe/metabolism , Frontotemporal Lobar Degeneration/metabolism , Spinal Cord/metabolism , Aged , Amyotrophic Lateral Sclerosis/pathology , Female , Frontal Lobe/blood supply , Frontal Lobe/pathology , Frontotemporal Lobar Degeneration/pathology , Humans , Male , Middle Aged , Spinal Cord/blood supply , Spinal Cord/pathology , Vascular Diseases/pathology
5.
Brain Commun ; 2(2): fcaa064, 2020.
Article in English | MEDLINE | ID: mdl-32954321

ABSTRACT

Increasingly, repeat expansions are being identified as part of the complex genetic architecture of amyotrophic lateral sclerosis. To date, several repeat expansions have been genetically associated with the disease: intronic repeat expansions in C9orf72, polyglutamine expansions in ATXN2 and polyalanine expansions in NIPA1. Together with previously published data, the identification of an amyotrophic lateral sclerosis patient with a family history of spinocerebellar ataxia type 1, caused by polyglutamine expansions in ATXN1, suggested a similar disease association for the repeat expansion in ATXN1. We, therefore, performed a large-scale international study in 11 700 individuals, in which we showed a significant association between intermediate ATXN1 repeat expansions and amyotrophic lateral sclerosis (P = 3.33 × 10-7). Subsequent functional experiments have shown that ATXN1 reduces the nucleocytoplasmic ratio of TDP-43 and enhances amyotrophic lateral sclerosis phenotypes in Drosophila, further emphasizing the role of polyglutamine repeat expansions in the pathophysiology of amyotrophic lateral sclerosis.

6.
Cell Rep ; 26(9): 2298-2306.e5, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30811981

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder without effective neuroprotective therapy. Known genetic variants impair pathways, including RNA processing, axonal transport, and protein homeostasis. We report ALS-causing mutations within the gene encoding the glycosyltransferase GLT8D1. Exome sequencing in an autosomal-dominant ALS pedigree identified p.R92C mutations in GLT8D1, which co-segregate with disease. Sequencing of local and international cohorts demonstrated significant ALS association in the same exon, including additional rare deleterious mutations in conserved amino acids. Mutations are associated with the substrate binding site, and both R92C and G78W changes impair GLT8D1 enzyme activity. Mutated GLT8D1 exhibits in vitro cytotoxicity and induces motor deficits in zebrafish consistent with ALS. Relative toxicity of mutations in model systems mirrors clinical severity. In conclusion, we have linked ALS pathophysiology to inherited mutations that diminish the activity of a glycosyltransferase enzyme.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Glycosyltransferases/genetics , Mutation , Amyotrophic Lateral Sclerosis/diagnosis , Animals , Cell Line , Cell Survival , Exons , Female , Gene Knockdown Techniques , Glycosyltransferases/metabolism , Golgi Apparatus/enzymology , Humans , Male , Mice , Middle Aged , Neurons/enzymology , Protein Domains/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...