Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 8(80): eabq5204, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36763636

ABSTRACT

Patients with autosomal recessive (AR) IL-12p40 or IL-12Rß1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.


Subject(s)
Interferon-gamma , Interleukin-23 , Mycobacterium Infections , Mycobacterium , Humans , Genetic Predisposition to Disease , Interleukin-17/genetics , Interleukin-23/genetics , Mycobacterium Infections/immunology
2.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: mdl-33529170

ABSTRACT

The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti-MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2-specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Camelus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Single-Domain Antibodies/pharmacology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19/immunology , Camelus/virology , Cross Reactions , Epitopes , Female , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...