Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 297: 122097, 2023 06.
Article in English | MEDLINE | ID: mdl-37001347

ABSTRACT

Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1ß. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.


Subject(s)
Toll-Like Receptor 4 , Transcriptome , Animals , Mice , Endothelial Cells , Pathogen-Associated Molecular Pattern Molecules , Kinetics , Immunity, Innate , Lung
2.
J Control Release ; 347: 476-488, 2022 07.
Article in English | MEDLINE | ID: mdl-35577151

ABSTRACT

Despite success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability remain. Molecular adjuvants targeting pattern recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulates various PRRs, including toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors. We hypothesized that targeting PRRs using molecular adjuvants on nanoparticles (NPs) along with a stabilized spike protein antigen could stimulate broad and efficient immune responses. Adjuvants targeting TLR4 (MPLA), TLR7/8 (R848), TLR9 (CpG), and RIG-I (PUUC) delivered on degradable polymer NPs were combined with the S1 subunit of spike protein and assessed in vitro with isogeneic mixed lymphocyte reactions (isoMLRs). For in vivo studies, the adjuvant-NPs were combined with stabilized spike protein or spike-conjugated NPs and assessed using a two-dose intranasal or intramuscular vaccination model in mice. Combination adjuvant-NPs simultaneously targeting TLR and RIG-I receptors (MPLA+PUUC, CpG+PUUC, and R848+PUUC) differentially induced T cell proliferation and increased proinflammatory cytokine secretion by APCs in vitro. When delivered intranasally, MPLA+PUUC NPs enhanced CD4+CD44+ activated memory T cell responses against spike protein in the lungs while MPLA NPs increased anti-spike IgA in the bronchoalveolar (BAL) fluid and IgG in the blood. Following intramuscular delivery, PUUC NPs induced strong humoral immune responses, characterized by increases in anti-spike IgG in the blood and germinal center B cell populations (GL7+ and BCL6+ B cells) in the draining lymph nodes (dLNs). MPLA+PUUC NPs further boosted spike protein-neutralizing antibody titers and T follicular helper cell populations in the dLNs. These results suggest that protein subunit vaccines with particle-delivered molecular adjuvants targeting TLR4 and RIG-I could lead to robust and unique route-specific adaptive immune responses against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , DEAD Box Protein 58 , Nanoparticles , Receptors, Immunologic , Toll-Like Receptor 4 , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Drug Delivery Systems , Immunity, Humoral , Immunoglobulin G , Mice , Nanoparticles/chemistry , Receptors, Immunologic/agonists , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4/agonists
3.
bioRxiv ; 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35132413

ABSTRACT

Despite recent success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability, remain. Although mRNA, pDNA, and viral-vector based vaccines are being administered, no protein subunit-based SARS-CoV-2 vaccine is approved. Molecular adjuvants targeting pathogen-recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulate various PRRs, including toll-like receptors (TLRs) and retinoic-acid-inducible gene I-like receptors (RIG-I). We hypothesized that targeting the same PRRs using adjuvants on nanoparticles along with a stabilized spike (S) protein antigen could provide broad and efficient immune responses. Formulations targeting TLR4 (MPLA), TLR7/8 (R848), TLR9 (CpG), and RIG-I (PUUC) delivered on degradable polymer-nanoparticles (NPs) were combined with the S1 subunit of S protein and assessed in vitro with isogeneic mixed lymphocyte reactions (iso-MLRs). For in vivo studies, the adjuvanted nanoparticles were combined with stabilized S protein and assessed using intranasal and intramuscular prime-boost vaccination models in mice. Combination NP-adjuvants targeting both TLR and RIG-I (MPLA+PUUC, CpG+PUUC, or R848+PUUC) differentially increased proinflammatory cytokine secretion (IL-1ß, IL-12p70, IL-27, IFN-ß) by APCs cultured in vitro, and induced differential T cell proliferation. When delivered intranasally, MPLA+PUUC NPs enhanced local CD4+CD44+ activated memory T cell responses while MPLA NPs increased anti-S-protein-specific IgG and IgA in the lung. Following intramuscular delivery, PUUC-carrying NPs induced strong humoral immune responses, characterized by increases in anti-S-protein IgG and neutralizing antibody titers and germinal center B cell populations (GL7+ and BCL6+ B cells). MPLA+PUUC NPs further boosted S-protein-neutralizing antibody titers and T follicular helper cell populations in draining lymph nodes. These results suggest that SARS-CoV-2-mimicking adjuvants and subunit vaccines could lead to robust and unique route-specific adaptive immune responses and may provide additional tools against the pandemic.

4.
Adv Healthc Mater ; 10(15): e2001899, 2021 08.
Article in English | MEDLINE | ID: mdl-33928762

ABSTRACT

Vaccines are commonly administered subcutaneously or intramuscularly, and local immune cells, notably dendritic cells (DCs), play a significant role in transporting vaccine antigens and adjuvants to draining lymph nodes. Here, it is compared how soluble and biomaterial-mediated delivery of Toll-like receptor (TLR)-targeted adjuvants, monophosphoryl lipid A (MPLA, TLR4 ligand) and 5'-C-phosphate-G-3' DNA (CpG DNA, TLR9 ligand), modulate 3D chemotaxis of bone marrow-derived dendritic cells (BMDCs) toward lymphatic chemokine gradients. Within microfluidic devices containing 3D collagen-based matrices to mimic tissue conditions, soluble MPLA increases BMDC chemotaxis toward gradients of CCL19 and CCL21, while soluble CpG has no effect. Delivering CpG on poly(lactic-co-glycolic) acid microparticles (MPs) enhances BMDC chemotaxis compared to MPLA-encapsulated MPs, and when co-delivered, MPLA and CpG do not synergistically enhance BMDC migration. It is concluded that supplementing granulocyte-macrophage colony stimulating factor-derived BMDC culture with interleukin-4 is necessary to induce CCR7 expression and chemotaxis of BMDCs. Different cell subsets in BMDC culture upregulate CCR7 in response to soluble versus biomaterial-loaded MPLA and CpG, and CCR7 expression does not consistently correlate with functional migration. The results show both adjuvant type and delivery method influence chemotaxis of DCs, and these findings uncover new directions for the rational design of vaccine formulations.


Subject(s)
Chemotaxis , Dendritic Cells/cytology , Drug Delivery Systems , Toll-Like Receptor 4/agonists , Toll-Like Receptor 9/agonists , Animals , Bone Marrow , Female , Mice, Inbred C57BL
5.
Nano Lett ; 21(1): 875-886, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33395313

ABSTRACT

Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs). SNAbs, with phage-display-identified cell-targeting ligands on one "face" and Fc-mimicking ligands on the opposite "face", were synthesized using a custom, multistep, solid-phase chemistry method. SNAbs efficiently targeted and depleted myeloid-derived immune-suppressor cells (MDSCs) from mouse-tumor and rat-trauma models, ex vivo. Systemic injection of MDSC-targeting SNAbs efficiently depleted circulating MDSCs in a mouse triple-negative breast cancer model, enabling enhanced T cell and Natural Killer cell infiltration into tumors. Our results demonstrate that SNAbs are a versatile and effective functional alternative to mAbs, with advantages of a plug-and-play, cell-free manufacturing process, and high-throughput screening (HTS)-enabled library of potential targeting ligands.


Subject(s)
Multifunctional Nanoparticles , Myeloid-Derived Suppressor Cells , Nanoparticles , Animals , Antibodies, Monoclonal , Humans , Killer Cells, Natural , Mice , Rats
6.
J Control Release ; 219: 610-621, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26489733

ABSTRACT

While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses.


Subject(s)
Dendritic Cells/immunology , Vaccines/immunology , Animals , Humans , Lymph Nodes/immunology , Macrophages/immunology , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...